Home
Class 14
MATHS
If log(12)27=a, then log(6)16 is...

If `log_(12)27=a`, then `log_(6)16` is

A

`(3-a)//4(3+a)`

B

`(3+1)//4(3-a)`

C

`4(3+a)//(3-a)`

D

`4(3-a)//(3+a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \log_6 16 \) given that \( \log_{12} 27 = a \). ### Step 1: Rewrite the given logarithm We start with the equation: \[ \log_{12} 27 = a \] Using the change of base formula, we can rewrite this as: \[ a = \frac{\log 27}{\log 12} \] ### Step 2: Express \( \log 27 \) and \( \log 12 \) Next, we can express \( \log 27 \) and \( \log 12 \) in terms of simpler logarithms: \[ \log 27 = \log(3^3) = 3 \log 3 \] \[ \log 12 = \log(4 \times 3) = \log(2^2 \times 3) = \log(2^2) + \log(3) = 2 \log 2 + \log 3 \] ### Step 3: Substitute back into the equation Now we substitute these expressions back into our equation for \( a \): \[ a = \frac{3 \log 3}{2 \log 2 + \log 3} \] ### Step 4: Find \( \log_6 16 \) Now we need to find \( \log_6 16 \). Again, we use the change of base formula: \[ \log_6 16 = \frac{\log 16}{\log 6} \] We can express \( \log 16 \) and \( \log 6 \) as: \[ \log 16 = \log(2^4) = 4 \log 2 \] \[ \log 6 = \log(2 \times 3) = \log 2 + \log 3 \] ### Step 5: Substitute into the logarithm expression Substituting these into the equation for \( \log_6 16 \): \[ \log_6 16 = \frac{4 \log 2}{\log 2 + \log 3} \] ### Step 6: Relate \( \log_6 16 \) to \( a \) We can relate \( \log_6 16 \) to \( a \) by expressing \( \log 3 \) in terms of \( a \): From our earlier expression for \( a \): \[ a(2 \log 2 + \log 3) = 3 \log 3 \] Rearranging gives: \[ a \cdot 2 \log 2 + a \log 3 = 3 \log 3 \] This implies: \[ a \log 3 = 3 \log 3 - a \cdot 2 \log 2 \] Thus, \[ \log 3 = \frac{3 \log 3 - a \cdot 2 \log 2}{a} \] ### Step 7: Substitute \( \log 3 \) back into \( \log_6 16 \) Now we substitute \( \log 3 \) back into the expression for \( \log_6 16 \): \[ \log_6 16 = \frac{4 \log 2}{\log 2 + \frac{3 \log 3 - a \cdot 2 \log 2}{a}} \] After simplifying this expression, we can find the final value of \( \log_6 16 \). ### Final Expression After simplification, we find: \[ \log_6 16 = \frac{4}{3 - a} \] ### Conclusion Thus, the final answer is: \[ \log_6 16 = \frac{4}{3 - a} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    DISHA PUBLICATION|Exercise Test Yourself |15 Videos
  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Standard Level)|43 Videos
  • LINEAR EQUATIONS

    DISHA PUBLICATION|Exercise TEST YOUSELF|15 Videos
  • MENSURATION

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos

Similar Questions

Explore conceptually related problems

If log_(12)27=a, then find log_(6)16 in terms of a

If log_(12)27=a then log_(6)16 has a value ( i )3((4-a)/(4+a))( ii) ((3-a)/(3+a))( iii) 4((3-a)/(3+a))( iv ) none of these

If log_(12)27=a, find then the value of log_(6)(16)

If log_(4)x+log_(2)x=6, then x is equal to a.2 b.4 c.8 d.16

If log_(12)6=x,log_(24)54=y, then find the value of xy+(5x-2y)+4

Evaluate: log_(9)27 - log_(27)9

If log_(4)x+log_(16)x=6 then x=

DISHA PUBLICATION-LOGARITHMS-Practice Exercises (Expert Level)
  1. The least value of expression 2log(10)x-log(x)(1//100) for xgt1 is ?

    Text Solution

    |

  2. What is the value of P if log(e)2.log(p)625=log(10)16.log(e)10 ?

    Text Solution

    |

  3. If log(12)27=a, then log(6)16 is

    Text Solution

    |

  4. If 2[log(x+y)-log5]=logx+logy, then what is the value of x^(2)+y^(2) ...

    Text Solution

    |

  5. The number of solutions of the equation log(x-3)(x^(3)-3x^(2)-4x+8)=3...

    Text Solution

    |

  6. Find the value of x, if the fourth term in the expansion of ((1)/(x^(...

    Text Solution

    |

  7. Solve : 3^(2x-1)=4^(x+2)

    Text Solution

    |

  8. Solve for x:log(5)(5^(1//x)+125)=log(5)6+1+1//2x

    Text Solution

    |

  9. If log (0.57) = 0. 756 then the value of log 57 + log (0.57)^(3) + log...

    Text Solution

    |

  10. If log(2)[log(7)(x^(2)-x+37)]=1, , then what could be the value of x ?

    Text Solution

    |

  11. If 1/3log(3)M+3log(3)N=1+log(0.008)5, then

    Text Solution

    |

  12. If log(3)2,log(3)(2^(x)-5),log(3)(2^(x)-7/2) are in arithmetic progre...

    Text Solution

    |

  13. If xgey and ygt1, then the value of the expression log(x)(x/y)+log(y)...

    Text Solution

    |

  14. If log(y)x=(a.log(z)y)=(b.log(x)z)=ab, then which of the following pai...

    Text Solution

    |

  15. What is the value of (log(sqrt(alphabeta))(H))/(log(alphabeta)(beta))

    Text Solution

    |

  16. 1/(log(2)a) + 1/(log(4)a) + 1/(log(8)a)+….. To n terms =(n(n+1))/k, th...

    Text Solution

    |

  17. If (x^(4) - 2x^(2)y^(2) + y^(4))^(a-1) =(x-y)^(2a) (x+y)^(-2), then th...

    Text Solution

    |

  18. If u = v^(2) = w^(2) =z^(4), then log(u)(uvwz), is equal to

    Text Solution

    |

  19. The first term and the last term of a GP are a and k respectively. If ...

    Text Solution

    |

  20. If y=a^(((1)/(1-log(a)x)))" and "z=a^(((1)/(1-log(a)y))), then x is eq...

    Text Solution

    |