Home
Class 14
MATHS
What is the value of (log(sqrt(alphabeta...

What is the value of `(log_(sqrt(alphabeta))(H))/(log_(alphabeta)(beta))`

A

`log_(alphabeta)(H^2)`

B

`log_(alpha)(H)`

C

`log_(alphabeta)(H)`

D

`log_(beta)(H^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\log_{\sqrt{\alpha\beta}}(H))/(\log_{\alpha\beta}(\beta))\), we will use properties of logarithms step by step. ### Step 1: Rewrite the logarithms using the change of base formula Using the change of base formula, we can express the logarithms in terms of natural logarithms (or any other base). The change of base formula states that: \[ \log_b(a) = \frac{\log_k(a)}{\log_k(b)} \] Applying this to our expression, we have: \[ \log_{\sqrt{\alpha\beta}}(H) = \frac{\log(H)}{\log(\sqrt{\alpha\beta})} \] and \[ \log_{\alpha\beta}(\beta) = \frac{\log(\beta)}{\log(\alpha\beta)} \] ### Step 2: Substitute these into the original expression Now substituting these into our original expression, we get: \[ \frac{\log(H)/\log(\sqrt{\alpha\beta})}{\log(\beta)/\log(\alpha\beta)} \] ### Step 3: Simplify the expression This simplifies to: \[ \frac{\log(H)}{\log(\sqrt{\alpha\beta})} \cdot \frac{\log(\alpha\beta)}{\log(\beta)} \] ### Step 4: Simplify \(\log(\sqrt{\alpha\beta})\) Recall that \(\sqrt{\alpha\beta} = (\alpha\beta)^{1/2}\). Therefore, \[ \log(\sqrt{\alpha\beta}) = \log((\alpha\beta)^{1/2}) = \frac{1}{2} \log(\alpha\beta) \] ### Step 5: Substitute back into the expression Now substituting this back into our expression gives: \[ \frac{\log(H)}{\frac{1}{2} \log(\alpha\beta)} \cdot \frac{\log(\alpha\beta)}{\log(\beta)} \] ### Step 6: Cancel \(\log(\alpha\beta)\) The \(\log(\alpha\beta)\) terms cancel out: \[ \frac{\log(H)}{\frac{1}{2}} \cdot \frac{1}{\log(\beta)} = 2 \cdot \frac{\log(H)}{\log(\beta)} \] ### Step 7: Rewrite using the properties of logarithms Using the property of logarithms, we can rewrite this as: \[ 2 \log_{\beta}(H) \] ### Conclusion Thus, the final value of the expression \((\log_{\sqrt{\alpha\beta}}(H))/(\log_{\alpha\beta}(\beta))\) is: \[ \log_{\beta}(H^2) \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    DISHA PUBLICATION|Exercise Test Yourself |15 Videos
  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Standard Level)|43 Videos
  • LINEAR EQUATIONS

    DISHA PUBLICATION|Exercise TEST YOUSELF|15 Videos
  • MENSURATION

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos

Similar Questions

Explore conceptually related problems

What is the value of (log_sqrt(alphabeta)(H))/(log_sqrt(alphabetagamma)(H)) ?

What is the value of log_(2)(log_(3)81) ?

If alpha and beta are solutions of the equation 4log_(3)^(2)x-4log_(3)x^(2)+1=0 then the value of |(sqrt(alpha beta)+1)/(sqrt(alpha beta)-1)| is

Find the value of log_(sqrt(3))3sqrt(3)-(log_(5)(0.04))

What is the value of (log_(27)9xxlog_(16)64)/(log_(4)sqrt(2)) ?

What is the value of (log_(27)9xxlog_(16)64)/(log_(4)sqrt(2)) ?

DISHA PUBLICATION-LOGARITHMS-Practice Exercises (Expert Level)
  1. If log (0.57) = 0. 756 then the value of log 57 + log (0.57)^(3) + log...

    Text Solution

    |

  2. If log(2)[log(7)(x^(2)-x+37)]=1, , then what could be the value of x ?

    Text Solution

    |

  3. If 1/3log(3)M+3log(3)N=1+log(0.008)5, then

    Text Solution

    |

  4. If log(3)2,log(3)(2^(x)-5),log(3)(2^(x)-7/2) are in arithmetic progre...

    Text Solution

    |

  5. If xgey and ygt1, then the value of the expression log(x)(x/y)+log(y)...

    Text Solution

    |

  6. If log(y)x=(a.log(z)y)=(b.log(x)z)=ab, then which of the following pai...

    Text Solution

    |

  7. What is the value of (log(sqrt(alphabeta))(H))/(log(alphabeta)(beta))

    Text Solution

    |

  8. 1/(log(2)a) + 1/(log(4)a) + 1/(log(8)a)+….. To n terms =(n(n+1))/k, th...

    Text Solution

    |

  9. If (x^(4) - 2x^(2)y^(2) + y^(4))^(a-1) =(x-y)^(2a) (x+y)^(-2), then th...

    Text Solution

    |

  10. If u = v^(2) = w^(2) =z^(4), then log(u)(uvwz), is equal to

    Text Solution

    |

  11. The first term and the last term of a GP are a and k respectively. If ...

    Text Solution

    |

  12. If y=a^(((1)/(1-log(a)x)))" and "z=a^(((1)/(1-log(a)y))), then x is eq...

    Text Solution

    |

  13. Solve the following equation for x and y log(100)|x+y| = 1/2, log(10...

    Text Solution

    |

  14. The greatest possible value of n could be if 9^(n)lt10^(8), given tha...

    Text Solution

    |

  15. Find the solution set of x, for the given inequality log(m)ngt1, where...

    Text Solution

    |

  16. The equation x^(3/4(log(2)x)^(2)+log(2)x-5/4)=sqrt(2) has

    Text Solution

    |

  17. If log(1/2) ((x^2+6x+9)/(2(x+1)) )< - log2(x+1) then complete set of v...

    Text Solution

    |

  18. What is the value of x in the following expansion ? 1-log(10)5=1/3(...

    Text Solution

    |

  19. If log(0.04)(x-1)gelog(0.2)(x-1) then x belongs to the interval

    Text Solution

    |

  20. If log(10)3=x and log(30)5=y, then log(30)8 is equal to

    Text Solution

    |