Home
Class 14
MATHS
What is the value of x in the following ...

What is the value of x in the following expansion ?
`1-log_(10)5=1/3("log"_(10)1/2+log_(10)x+1/3log_(10)5)`

A

1

B

`16xx5^(-1//3)`

C

`16xx5^(1//3)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 1 - \log_{10} 5 = \frac{1}{3} \left( \log_{10} \frac{1}{2} + \log_{10} x + \frac{1}{3} \log_{10} 5 \right) \), we will follow these steps: ### Step 1: Rewrite the Left Side We can rewrite the left side using the property of logarithms: \[ 1 = \log_{10} 10 \quad \text{(since } \log_{10} 10 = 1\text{)} \] Thus, we can express the left side as: \[ \log_{10} 10 - \log_{10} 5 = \log_{10} \left( \frac{10}{5} \right) = \log_{10} 2 \] ### Step 2: Rewrite the Right Side Now, let's simplify the right side: \[ \frac{1}{3} \left( \log_{10} \frac{1}{2} + \log_{10} x + \frac{1}{3} \log_{10} 5 \right) \] Using the property of logarithms \( \log a + \log b = \log(ab) \): \[ \log_{10} \frac{1}{2} + \log_{10} x = \log_{10} \left( \frac{x}{2} \right) \] Thus, we can rewrite the right side as: \[ \frac{1}{3} \left( \log_{10} \left( \frac{x}{2} \right) + \frac{1}{3} \log_{10} 5 \right) \] ### Step 3: Combine the Logarithms Now we can combine the logarithms: \[ \frac{1}{3} \left( \log_{10} \left( \frac{x}{2} \right) + \log_{10} 5^{1/3} \right) = \frac{1}{3} \log_{10} \left( \frac{x}{2} \cdot 5^{1/3} \right) \] ### Step 4: Set the Two Sides Equal Now we have: \[ \log_{10} 2 = \frac{1}{3} \log_{10} \left( \frac{x}{2} \cdot 5^{1/3} \right) \] ### Step 5: Eliminate the Fraction To eliminate the fraction, we multiply both sides by 3: \[ 3 \log_{10} 2 = \log_{10} \left( \frac{x}{2} \cdot 5^{1/3} \right) \] ### Step 6: Rewrite the Left Side Using the property \( n \log a = \log a^n \): \[ \log_{10} (2^3) = \log_{10} \left( \frac{x}{2} \cdot 5^{1/3} \right) \] This simplifies to: \[ \log_{10} 8 = \log_{10} \left( \frac{x}{2} \cdot 5^{1/3} \right) \] ### Step 7: Set the Arguments Equal Since the logarithms are equal, we can set the arguments equal: \[ 8 = \frac{x}{2} \cdot 5^{1/3} \] ### Step 8: Solve for x Multiply both sides by 2: \[ 16 = x \cdot 5^{1/3} \] Now, divide both sides by \( 5^{1/3} \): \[ x = \frac{16}{5^{1/3}} \] ### Final Answer Thus, the value of \( x \) is: \[ x = 16 \cdot 5^{-1/3} \] ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    DISHA PUBLICATION|Exercise Test Yourself |15 Videos
  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Standard Level)|43 Videos
  • LINEAR EQUATIONS

    DISHA PUBLICATION|Exercise TEST YOUSELF|15 Videos
  • MENSURATION

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos

Similar Questions

Explore conceptually related problems

log_(10)3+log_(10)2-2log_(10)5

(log_(10)2)^(3)+log_(10)8*log_(10)5+(log_(10)5)^(3) is

Solve for x the following equation.x(log10^(x)+5)/(3)=10^(5+log_(10)x)

Find the value of x which satisfies the relation log_(10)3+log_(10)(4x+1)=log_(10)(x+1)+1

The value of (log_(10)2)^(3)+log_(10)8log_(10)5+(log_(10)5)^(3) is

The value of (1)/(5) log_(10) 3125 -4 log_(10)2 +log_(10)32 is

(log_(10)x)^(2)+log_(10)x^(2)=(log_(10)2)^(2)-1

The equation (log_(10)x+2)^(3)+(log_(10)x-1)^(3)=(2log_(10)x+1)3

(1+(1)/(2x))log_(10)3+log_(10)2=log_(10)(27-sqrt(3))

Write each of the following as single logarithm: (a) 1+ log_(2) 5" "(b) 2- log_(3) 7 (c) 2log_(10) x+3 log_(10) y - 5 log_(10) z

DISHA PUBLICATION-LOGARITHMS-Practice Exercises (Expert Level)
  1. If log (0.57) = 0. 756 then the value of log 57 + log (0.57)^(3) + log...

    Text Solution

    |

  2. If log(2)[log(7)(x^(2)-x+37)]=1, , then what could be the value of x ?

    Text Solution

    |

  3. If 1/3log(3)M+3log(3)N=1+log(0.008)5, then

    Text Solution

    |

  4. If log(3)2,log(3)(2^(x)-5),log(3)(2^(x)-7/2) are in arithmetic progre...

    Text Solution

    |

  5. If xgey and ygt1, then the value of the expression log(x)(x/y)+log(y)...

    Text Solution

    |

  6. If log(y)x=(a.log(z)y)=(b.log(x)z)=ab, then which of the following pai...

    Text Solution

    |

  7. What is the value of (log(sqrt(alphabeta))(H))/(log(alphabeta)(beta))

    Text Solution

    |

  8. 1/(log(2)a) + 1/(log(4)a) + 1/(log(8)a)+….. To n terms =(n(n+1))/k, th...

    Text Solution

    |

  9. If (x^(4) - 2x^(2)y^(2) + y^(4))^(a-1) =(x-y)^(2a) (x+y)^(-2), then th...

    Text Solution

    |

  10. If u = v^(2) = w^(2) =z^(4), then log(u)(uvwz), is equal to

    Text Solution

    |

  11. The first term and the last term of a GP are a and k respectively. If ...

    Text Solution

    |

  12. If y=a^(((1)/(1-log(a)x)))" and "z=a^(((1)/(1-log(a)y))), then x is eq...

    Text Solution

    |

  13. Solve the following equation for x and y log(100)|x+y| = 1/2, log(10...

    Text Solution

    |

  14. The greatest possible value of n could be if 9^(n)lt10^(8), given tha...

    Text Solution

    |

  15. Find the solution set of x, for the given inequality log(m)ngt1, where...

    Text Solution

    |

  16. The equation x^(3/4(log(2)x)^(2)+log(2)x-5/4)=sqrt(2) has

    Text Solution

    |

  17. If log(1/2) ((x^2+6x+9)/(2(x+1)) )< - log2(x+1) then complete set of v...

    Text Solution

    |

  18. What is the value of x in the following expansion ? 1-log(10)5=1/3(...

    Text Solution

    |

  19. If log(0.04)(x-1)gelog(0.2)(x-1) then x belongs to the interval

    Text Solution

    |

  20. If log(10)3=x and log(30)5=y, then log(30)8 is equal to

    Text Solution

    |