Home
Class 14
MATHS
How many possible values of n will make ...

How many possible values of n will make `""^(13) C_(n) lt ""^(13)C_(n+2)?`

A

A) 4

B

B) 3

C

C) 6

D

D) 2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of how many possible values of \( n \) will make \( \binom{13}{n} < \binom{13}{n+2} \), we can follow these steps: ### Step 1: Understand the Binomial Coefficient The binomial coefficient \( \binom{n}{r} \) represents the number of ways to choose \( r \) elements from a set of \( n \) elements. The relationship \( \binom{n}{r} = \binom{n}{n-r} \) is important because it shows that the coefficients are symmetric. ### Step 2: Set Up the Inequality We need to find values of \( n \) such that: \[ \binom{13}{n} < \binom{13}{n+2} \] ### Step 3: Use the Property of Binomial Coefficients Using the property of binomial coefficients, we can express the inequality as: \[ \frac{\binom{13}{n}}{\binom{13}{n+2}} < 1 \] This can be rewritten using the formula for binomial coefficients: \[ \frac{13!}{n!(13-n)!} \cdot \frac{(n+2)!(13-(n+2))!}{13!} < 1 \] This simplifies to: \[ \frac{(n+2)(n+1)}{(13-n)(12-n)} < 1 \] ### Step 4: Rearranging the Inequality Rearranging gives: \[ (n+2)(n+1) < (13-n)(12-n) \] Expanding both sides: \[ n^2 + 3n + 2 < 156 - 25n + n^2 \] Cancelling \( n^2 \) from both sides: \[ 3n + 2 < 156 - 25n \] Combining like terms: \[ 28n < 154 \] Dividing by 28: \[ n < \frac{154}{28} \approx 5.5 \] ### Step 5: Determine Possible Values of \( n \) Since \( n \) must be a non-negative integer, the possible values for \( n \) are: \[ n = 0, 1, 2, 3, 4, 5 \] This gives us a total of 6 possible values. ### Conclusion Thus, the number of possible values of \( n \) that satisfy the inequality \( \binom{13}{n} < \binom{13}{n+2} \) is: \[ \boxed{6} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos
  • PERMUTATIONS AND COMBINATIONS

    DISHA PUBLICATION|Exercise PRACTICE EXERCISES ( STANDARD LEVEL)|82 Videos
  • PERCENTAGES

    DISHA PUBLICATION|Exercise PRACTICE EXERCISE (TEST YOURSELF)|15 Videos
  • PROBABILITY

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos

Similar Questions

Explore conceptually related problems

The value of n so that C(n-1,3)+C(n-1,4)>C(n,3) is?

If n is an integer,how many values of n will give an integral value of ((16n^(2)+7n+6)/(n))? (a) 2 (b) 3 (c) 4 (d) None of these

Knowledge Check

  • what is the least possible value of n if : ""^(n-1)C_3 +^(n-1)C_4 gt ""^nC_3

    A
    6
    B
    8
    C
    7
    D
    12
  • What is the least possible value of n if : ^(n - 1)C_3 + ^(n - 1)C_4 gt ^nC_3

    A
    6
    B
    8
    C
    7
    D
    12
  • If n in N, n > 1 , then value of E= a - ""^(n)C_(1) (a-1) + ""^(n)C_(2) (a -2)+ ... + (- 1)^(n) (a-n) (""^(n)C_(n)) is

    A
    a
    B
    0
    C
    `a^(2)`
    D
    `2^(n)`
  • Similar Questions

    Explore conceptually related problems

    If the value of (n + 2) . ""^(n)C_(0) *2^(n+1) - (n+1) * ""^(n)C_(1)*2^(n) + n* ""^(n)C_(2) * 2^(n-1) -... is equal to k(n +1) , the value of k is .

    How many metamers are possible for 2^(0) amines of formula C_(5)H_(13)N ?

    If n is an odd natural number and ""^(n)C_(0)lt ""^(n)C_(1)lt ""^(n)C_(2)lt ...lt ""^(n)C_(r) gt ""^(n)C_(r+1) gt ""^(n)C_(r+2) gt ...gt""^(n)C_(n) , then r=

    The value of ""^(13)C_(2) +""^(13)C_(3) +""^(13)C_(4) +…+""^(13)C_(13) is

    The value of sum (""^(n) C_(1) )^(2)+ (""^(n) C_(2) )^(2) + (""^(n) C_(3))^(2) + …+ (""^(n) C_(n) )^(2) is