Home
Class 14
MATHS
Let A=[{:(1,0),(0,-1):}] and B=[{:(1,x),...

Let `A=[{:(1,0),(0,-1):}] and B=[{:(1,x),(0,1):}]`. If AB=BA then what is the value of x ?

A

`-1`

B

0

C

1

D

Any real number

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where we need to find the value of \( x \) such that \( AB = BA \) for the given matrices \( A \) and \( B \), we will follow these steps: ### Step 1: Define the matrices Given: \[ A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \] ### Step 2: Calculate the product \( AB \) To find \( AB \), we perform the matrix multiplication: \[ AB = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \] Calculating each element: - First row, first column: \( 1 \cdot 1 + 0 \cdot 0 = 1 \) - First row, second column: \( 1 \cdot x + 0 \cdot 1 = x \) - Second row, first column: \( 0 \cdot 1 + (-1) \cdot 0 = 0 \) - Second row, second column: \( 0 \cdot x + (-1) \cdot 1 = -1 \) Thus, \[ AB = \begin{pmatrix} 1 & x \\ 0 & -1 \end{pmatrix} \] ### Step 3: Calculate the product \( BA \) Now, we calculate \( BA \): \[ BA = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \] Calculating each element: - First row, first column: \( 1 \cdot 1 + x \cdot 0 = 1 \) - First row, second column: \( 1 \cdot 0 + x \cdot (-1) = -x \) - Second row, first column: \( 0 \cdot 1 + 1 \cdot 0 = 0 \) - Second row, second column: \( 0 \cdot 0 + 1 \cdot (-1) = -1 \) Thus, \[ BA = \begin{pmatrix} 1 & -x \\ 0 & -1 \end{pmatrix} \] ### Step 4: Set \( AB \) equal to \( BA \) Since we know \( AB = BA \), we set the two matrices equal to each other: \[ \begin{pmatrix} 1 & x \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & -x \\ 0 & -1 \end{pmatrix} \] ### Step 5: Compare corresponding elements From the matrices, we can compare the elements: 1. From the first row, second column: \( x = -x \) ### Step 6: Solve for \( x \) To solve the equation \( x = -x \): \[ x + x = 0 \implies 2x = 0 \implies x = 0 \] ### Conclusion The value of \( x \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • MATRIX

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|91 Videos
  • LOGARITHM

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|24 Videos
  • PERMUTATION AND COMBINATION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|50 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(2x,0),(x,x):}]and A^(-1)=[{:(1,0),(-1,2):}] , then what is the value of x ?

Given A=[{:(1,0),(0,-1):}] and B=[{:(0,1),(1,0):}] Write the value of AB.

if A=[{:(1,0),(0,1):}]and B=[{:(a,c),(b,d):}], then show that (AB)'=B'A'

If the inverse of [{:(1,p,q),(0,x,0),(0,0,1):}]"is"[{:(1,-p,-q),(0,1,0),(0,0,1):}] then what is the value of x?

If adj A = [{:(a,0),(-1,b):}] and ab ne 0, then what is the value of |A^(-1)| ?

If A=[{:(3,1),(0,4):}] and B = [{:(1,1),(0,2):}] , then which of the following is/are correct ? I. AB is defined II. BA is defined III. AB=BA Select the correct answer using the code given below :

A=[{:(3,1),(0,4):}]and B = [{:(1,1),(0,2):}] , then which of the following is/are correct ? I. AB is defined II. BA is defined III. AB = BA Select the correct answer using the codes given below.

If {:A=[(1,x),(x^7,4y)]a,B=[(-3,1),(1,0)]and adjA+B=[(1,0),(0,1)]:} , then the values of x and y are respectively

If A=[(1,x),(x^(2),4y)] and B=[(-3,1),(1,0)], adj(A)+B=[(1,0),(0,1)] then the values of x and y are

PUNEET DOGRA-MATRIX-PREV YEAR QUESTIONS
  1. Let A=[{:(1,0),(0,-1):}] and B=[{:(1,x),(0,1):}]. If AB=BA then what i...

    Text Solution

    |

  2. If A=[{:(1,-1),(-1,1):}] then the expression A^(3)-2A^(2) is

    Text Solution

    |

  3. If A=[{:(1,2),(2,3),(3,4):}] and B=[{:(1,2),(2,1):}] then Which one ...

    Text Solution

    |

  4. If B=[{:(3,2,0),(2,4,0),(1,1,0):}] than what is adjoint of B equal to ...

    Text Solution

    |

  5. If A=[{:(0,1),(1,0):}] then the matrix A is

    Text Solution

    |

  6. Consider the following in respect of matrices A and B of same order: ...

    Text Solution

    |

  7. Let matrix B be the adjoint of a square matrix A.I be the identity mat...

    Text Solution

    |

  8. Consider the following in respect of matrices A,B and C of same order....

    Text Solution

    |

  9. The system of equation 2x+y-3z=5 3x-2y+2z=5 and 5x-3y-z=16

    Text Solution

    |

  10. What should be the value of x so that the matrix ({:(2,4),(-8,X):}) do...

    Text Solution

    |

  11. If A and B are two invertible square matrices of same order, then what...

    Text Solution

    |

  12. What is the adjoint of the matrix : ({:(cos (-theta),-sin (-theta)),...

    Text Solution

    |

  13. For a square matrix A. which of the following properties hold ? I. (...

    Text Solution

    |

  14. A square matrix A is called orthogonal if.

    Text Solution

    |

  15. If A=({:(1,2),(2,3):}) and A^(2) -KA-I(2)=O," where "I(2) is the 2xx2 ...

    Text Solution

    |

  16. If A is a 2xx3 matrix and AB is a 2xx5 matrix. Then B must be a

    Text Solution

    |

  17. What is the inverse of the matrix A=({:(cos theta, sin theta ,0),(- ...

    Text Solution

    |

  18. If A=[{:(4i-6,10i),(14i,6+4i):}] and K=(1)/(2i), where i= sqrt(-1). Th...

    Text Solution

    |

  19. If A is a square matrix, then the value of adj A^(T)-(adj A)^(T) is eq...

    Text Solution

    |

  20. If a,b,c are non-zero real numbers, then the inverse of the matrix A=[...

    Text Solution

    |

  21. The ad joint of the matrix A= [{:(1,0,2),(2,1,0),(0,3,1):}] is :

    Text Solution

    |