Home
Class 14
MATHS
If X and Y are the matrices of order 2xx...

If X and Y are the matrices of order `2xx2` each and `2x-3y=[{:(-7,0),(7,-13):}] and 3x+2y =[{:(9,13),(4,13):}]` then what is Y equal to

A

A. `[{:(1,3),(-2,1):}]`

B

B. `[{:(1,3),(2,1):}]`

C

C. `[{:(3,2),(-1,5):}]`

D

D. `[{:(3,2),(1,-5):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the matrix \( Y \) given the equations \( 2X - 3Y = \begin{pmatrix} -7 & 0 \\ 7 & -13 \end{pmatrix} \) and \( 3X + 2Y = \begin{pmatrix} 9 & 13 \\ 4 & 13 \end{pmatrix} \), we can follow these steps: ### Step 1: Express \( X \) in terms of \( Y \) from the first equation. Starting with the equation: \[ 2X - 3Y = \begin{pmatrix} -7 & 0 \\ 7 & -13 \end{pmatrix} \] We can rearrange this to express \( X \): \[ 2X = \begin{pmatrix} -7 & 0 \\ 7 & -13 \end{pmatrix} + 3Y \] \[ X = \frac{1}{2} \left( \begin{pmatrix} -7 & 0 \\ 7 & -13 \end{pmatrix} + 3Y \right) \] ### Step 2: Substitute \( X \) into the second equation. Now we substitute \( X \) into the second equation: \[ 3X + 2Y = \begin{pmatrix} 9 & 13 \\ 4 & 13 \end{pmatrix} \] Substituting for \( X \): \[ 3 \left( \frac{1}{2} \left( \begin{pmatrix} -7 & 0 \\ 7 & -13 \end{pmatrix} + 3Y \right) \right) + 2Y = \begin{pmatrix} 9 & 13 \\ 4 & 13 \end{pmatrix} \] This simplifies to: \[ \frac{3}{2} \left( \begin{pmatrix} -7 & 0 \\ 7 & -13 \end{pmatrix} + 3Y \right) + 2Y = \begin{pmatrix} 9 & 13 \\ 4 & 13 \end{pmatrix} \] ### Step 3: Distribute and combine like terms. Distributing \( \frac{3}{2} \): \[ \begin{pmatrix} -\frac{21}{2} & 0 \\ \frac{21}{2} & -\frac{39}{2} \end{pmatrix} + \frac{9}{2} Y + 2Y = \begin{pmatrix} 9 & 13 \\ 4 & 13 \end{pmatrix} \] Now, convert \( 2Y \) to have a common denominator: \[ 2Y = \frac{4}{2} Y \] So, we have: \[ \begin{pmatrix} -\frac{21}{2} & 0 \\ \frac{21}{2} & -\frac{39}{2} \end{pmatrix} + \left( \frac{9}{2} + \frac{4}{2} \right) Y = \begin{pmatrix} 9 & 13 \\ 4 & 13 \end{pmatrix} \] This simplifies to: \[ \begin{pmatrix} -\frac{21}{2} & 0 \\ \frac{21}{2} & -\frac{39}{2} \end{pmatrix} + \frac{13}{2} Y = \begin{pmatrix} 9 & 13 \\ 4 & 13 \end{pmatrix} \] ### Step 4: Isolate \( Y \). Now, isolate \( Y \): \[ \frac{13}{2} Y = \begin{pmatrix} 9 & 13 \\ 4 & 13 \end{pmatrix} - \begin{pmatrix} -\frac{21}{2} & 0 \\ \frac{21}{2} & -\frac{39}{2} \end{pmatrix} \] Calculating the right-hand side: \[ = \begin{pmatrix} 9 + \frac{21}{2} & 13 - 0 \\ 4 - \frac{21}{2} & 13 + \frac{39}{2} \end{pmatrix} \] Calculating each element: - For the first element: \( 9 + \frac{21}{2} = \frac{18}{2} + \frac{21}{2} = \frac{39}{2} \) - For the second element: \( 13 = \frac{26}{2} \) - For the third element: \( 4 - \frac{21}{2} = \frac{8}{2} - \frac{21}{2} = -\frac{13}{2} \) - For the fourth element: \( 13 + \frac{39}{2} = \frac{26}{2} + \frac{39}{2} = \frac{65}{2} \) Thus, we have: \[ \frac{13}{2} Y = \begin{pmatrix} \frac{39}{2} & \frac{26}{2} \\ -\frac{13}{2} & \frac{65}{2} \end{pmatrix} \] ### Step 5: Solve for \( Y \). Multiply both sides by \( \frac{2}{13} \): \[ Y = \frac{2}{13} \begin{pmatrix} \frac{39}{2} & \frac{26}{2} \\ -\frac{13}{2} & \frac{65}{2} \end{pmatrix} \] Calculating each element: - For the first element: \( \frac{2}{13} \cdot \frac{39}{2} = \frac{39}{13} = 3 \) - For the second element: \( \frac{2}{13} \cdot \frac{26}{2} = \frac{26}{13} = 2 \) - For the third element: \( \frac{2}{13} \cdot -\frac{13}{2} = -1 \) - For the fourth element: \( \frac{2}{13} \cdot \frac{65}{2} = 5 \) Thus, we find: \[ Y = \begin{pmatrix} 3 & 2 \\ -1 & 5 \end{pmatrix} \] ### Final Answer: The matrix \( Y \) is: \[ Y = \begin{pmatrix} 3 & 2 \\ -1 & 5 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRIX

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|91 Videos
  • LOGARITHM

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS|24 Videos
  • PERMUTATION AND COMBINATION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|50 Videos

Similar Questions

Explore conceptually related problems

If X and Y are the matrices of order 2 xx 2 each and 2X-3Y=[{:(-7,0),(7,-13):}]and 3X + 2Y=[{:(9,13),(4,13):}] , then what is Y equal to ?

[{:(2x+y,4x),(5x-7,4x):}]=[{:(7,7y-13),(y,x+6):}] then the value of x,y is

If x+y-7=0 and 3x+y-13=0 , then what is 4x^(2)+y^(2)+4xy equal to ?

If [(2,-1,3),(1,3,-1),(3,2,1)],[(x),(y),(z)]=[(9),(4),(10)] ,then [(x),(y),(z)] is equal to

{:(2x - 3y = 17),(4x + y = 13):}

If x + y -7 =0 and 3x + y -13 = 0 . then what is 4x^(2) + y^(2) + 4xy equal to?

If (2x+3,4y-3) = (9,13) then find x + y .

Solve for x and y: 2x - 3y-13 =0 , 3x -2y+12 =0

PUNEET DOGRA-MATRIX-PREV YEAR QUESTIONS
  1. If X and Y are the matrices of order 2xx2 each and 2x-3y=[{:(-7,0),(7,...

    Text Solution

    |

  2. If A=[{:(1,-1),(-1,1):}] then the expression A^(3)-2A^(2) is

    Text Solution

    |

  3. If A=[{:(1,2),(2,3),(3,4):}] and B=[{:(1,2),(2,1):}] then Which one ...

    Text Solution

    |

  4. If B=[{:(3,2,0),(2,4,0),(1,1,0):}] than what is adjoint of B equal to ...

    Text Solution

    |

  5. If A=[{:(0,1),(1,0):}] then the matrix A is

    Text Solution

    |

  6. Consider the following in respect of matrices A and B of same order: ...

    Text Solution

    |

  7. Let matrix B be the adjoint of a square matrix A.I be the identity mat...

    Text Solution

    |

  8. Consider the following in respect of matrices A,B and C of same order....

    Text Solution

    |

  9. The system of equation 2x+y-3z=5 3x-2y+2z=5 and 5x-3y-z=16

    Text Solution

    |

  10. What should be the value of x so that the matrix ({:(2,4),(-8,X):}) do...

    Text Solution

    |

  11. If A and B are two invertible square matrices of same order, then what...

    Text Solution

    |

  12. What is the adjoint of the matrix : ({:(cos (-theta),-sin (-theta)),...

    Text Solution

    |

  13. For a square matrix A. which of the following properties hold ? I. (...

    Text Solution

    |

  14. A square matrix A is called orthogonal if.

    Text Solution

    |

  15. If A=({:(1,2),(2,3):}) and A^(2) -KA-I(2)=O," where "I(2) is the 2xx2 ...

    Text Solution

    |

  16. If A is a 2xx3 matrix and AB is a 2xx5 matrix. Then B must be a

    Text Solution

    |

  17. What is the inverse of the matrix A=({:(cos theta, sin theta ,0),(- ...

    Text Solution

    |

  18. If A=[{:(4i-6,10i),(14i,6+4i):}] and K=(1)/(2i), where i= sqrt(-1). Th...

    Text Solution

    |

  19. If A is a square matrix, then the value of adj A^(T)-(adj A)^(T) is eq...

    Text Solution

    |

  20. If a,b,c are non-zero real numbers, then the inverse of the matrix A=[...

    Text Solution

    |

  21. The ad joint of the matrix A= [{:(1,0,2),(2,1,0),(0,3,1):}] is :

    Text Solution

    |