Home
Class 14
MATHS
If f(x) = |(1+sin^(2)x,cos^(2)x,4 sin 2x...

If `f(x) = |(1+sin^(2)x,cos^(2)x,4 sin 2x),(sin^(2)x,1+cos^(2)x,4 sin 2x),(sin^(2)x,cos^(2)x,1+4 sin 2x)|` What is the maximum value of f(x)?

A

A. 2

B

B. 4

C

C. 6

D

D. 8

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the function \( f(x) = \left| \begin{array}{ccc} 1 + \sin^2 x & \cos^2 x & 4 \sin 2x \\ \sin^2 x & 1 + \cos^2 x & 4 \sin 2x \\ \sin^2 x & \cos^2 x & 1 + 4 \sin 2x \end{array} \right| \), we will calculate the determinant step by step. ### Step 1: Write down the determinant We start with the determinant of the given matrix: \[ D = \left| \begin{array}{ccc} 1 + \sin^2 x & \cos^2 x & 4 \sin 2x \\ \sin^2 x & 1 + \cos^2 x & 4 \sin 2x \\ \sin^2 x & \cos^2 x & 1 + 4 \sin 2x \end{array} \right| \] ### Step 2: Simplify the determinant We can simplify the determinant using row operations. Let's perform the operation \( R_1 \leftarrow R_1 - R_2 \) and \( R_3 \leftarrow R_3 - R_2 \). After performing these operations, we get: \[ D = \left| \begin{array}{ccc} 1 + \sin^2 x - \sin^2 x & \cos^2 x - (1 + \cos^2 x) & 4 \sin 2x - 4 \sin 2x \\ \sin^2 x & 1 + \cos^2 x & 4 \sin 2x \\ \sin^2 x - \sin^2 x & \cos^2 x - (1 + \cos^2 x) & 1 + 4 \sin 2x - 4 \sin 2x \end{array} \right| \] This simplifies to: \[ D = \left| \begin{array}{ccc} 1 & -1 & 0 \\ \sin^2 x & 1 + \cos^2 x & 4 \sin 2x \\ 0 & -1 & 1 \end{array} \right| \] ### Step 3: Calculate the determinant Now we can calculate the determinant by expanding along the first row: \[ D = 1 \cdot \left| \begin{array}{cc} 1 + \cos^2 x & 4 \sin 2x \\ -1 & 1 \end{array} \right| - (-1) \cdot \left| \begin{array}{cc} \sin^2 x & 4 \sin 2x \\ 0 & 1 \end{array} \right| \] Calculating the first determinant: \[ \left| \begin{array}{cc} 1 + \cos^2 x & 4 \sin 2x \\ -1 & 1 \end{array} \right| = (1 + \cos^2 x) \cdot 1 - (-1) \cdot 4 \sin 2x = 1 + \cos^2 x + 4 \sin 2x \] Calculating the second determinant: \[ \left| \begin{array}{cc} \sin^2 x & 4 \sin 2x \\ 0 & 1 \end{array} \right| = \sin^2 x \cdot 1 - 0 \cdot 4 \sin 2x = \sin^2 x \] Putting it all together: \[ D = 1 + \cos^2 x + 4 \sin 2x + \sin^2 x \] Using the identity \( \cos^2 x + \sin^2 x = 1 \): \[ D = 1 + 1 + 4 \sin 2x = 2 + 4 \sin 2x \] ### Step 4: Find the maximum value The maximum value of \( D \) occurs when \( \sin 2x \) is maximized. The maximum value of \( \sin 2x \) is 1. Therefore: \[ D_{\text{max}} = 2 + 4 \cdot 1 = 6 \] ### Conclusion Thus, the maximum value of \( f(x) \) is: \[ \boxed{6} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |55 Videos
  • DEFINITE INTEGRATION

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS |65 Videos
  • DIFFERENTIAL EQUATION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |84 Videos

Similar Questions

Explore conceptually related problems

If f(x)= |{:(,1+sin^(2)x,cos^(2)x,4sin2x),(,sin^(2)x,1+cos^(2)x,4sin2x),(,sin^(2)x,cos^(2)x,1+4sin2x):}| then the maximum value of f(x) is

f(x)=([1+sin^(2)x,cos^(2)x,4sin2xsin^(2)x,1+cos^(2)x,4sin2xsin^(2)x,cos^(2)x,1+4sin2x])

If /_\ = |[5+sin^(2)x,cos^(2)x,4sin2x],[sin^(2)x,5+cos^(2)x,4sin2x],[sin^(2)x,cos^(2)x,5+4sin2x]| =

If f(x)=|{:(5+sin^2x,cos^2x,4sin2x),(sin^2x,5+cos^2x,4sin2x),(sin^2x,cos^2x,5+4sin2x):}| then evaluate

If the maximum and minimum values of the determinant |(1 + sin^(2)x,cos^(2) x,sin 2x),(sin^(2) x,1 + cos^(2) x,sin 2x),(sin^(2) x,cos^(2) x,1 + sin 2x)| are alpha and beta , then

The maximum value of f(x)=|(sin^(2)x,1+cos^(2)x,cos2x),(1+sin^(2)x,cos^(2)x,cos2x),(sin^(2)x,cos^(2)x,sin2x)|,x inR is :

If sin^(2)4x+cos^(2)x=2sin4x cos^(2)x, then

PUNEET DOGRA-DETERMINANTS -PREV YEAR QUESTIONS
  1. If f(x) = |(1+sin^(2)x,cos^(2)x,4 sin 2x),(sin^(2)x,1+cos^(2)x,4 sin 2...

    Text Solution

    |

  2. What is the value of determinant |(1!,2!,3!),(2!,3!,4!),(3!,4!,5!)| ?

    Text Solution

    |

  3. What are the values of x that satisfy equation |(x,0,2),(2x,2,1),(1,1,...

    Text Solution

    |

  4. The factor of the determinant |(x+a,b,c),(a,x+b,c),(a,b,x+c)| is

    Text Solution

    |

  5. If |(x,-3i,1),(y,1,i),(0,2i,-i)|=6+11i. then what are the value of x a...

    Text Solution

    |

  6. A is a square matrix of order 3 such that its determinant is 4. What i...

    Text Solution

    |

  7. If A is a square matrix of order n gt 1, then which one of the followi...

    Text Solution

    |

  8. Let A and B be (3 xx 3) matrices with det A = 4 and det B = 3 What i...

    Text Solution

    |

  9. Let A and B be (3 xx 3) matrices with det A = 4 and det B = 3 What i...

    Text Solution

    |

  10. If in a triangle ABC, |{:(1, sin A ,sin^(2)A),(1,sin B , sin^(2)B),(1,...

    Text Solution

    |

  11. Find the values of x,y,z if the matrix A=[(0,3y,z),(x,y,-z),(x,-y,z)] ...

    Text Solution

    |

  12. If u, v and w (all positive) are the pth, qth, and rth terms of a GP, ...

    Text Solution

    |

  13. If a + b + c = 0, then one of the solution of |(a-x,c,b),(c,b-x,a),(b,...

    Text Solution

    |

  14. Which one of the following factors does the expansions of the determin...

    Text Solution

    |

  15. The system of equation 2x + y - 3z = 5 3x - 2y + 2z = 5 5x - 3y ...

    Text Solution

    |

  16. The value of the determinants |("cos"^(2)(theta)/(2),"sin"^(2)(theta)/...

    Text Solution

    |

  17. The system of equation kx + y + z = 1, x + ky + z = k and x + y + kz =...

    Text Solution

    |

  18. If p + q + r = a + b + c = 0, then the determinant |(pa,qb,rc),(qc,ra,...

    Text Solution

    |

  19. The value of the determinant : |(1-alpha,alpha-alpha^(2),alpha^(2)),(1...

    Text Solution

    |

  20. If B is a non-singular matrix and A is a square matrix, then the value...

    Text Solution

    |

  21. What is the value of the determinant ? |(1,1,1),(1,1+xyz,1),(1,1,1+x...

    Text Solution

    |