Home
Class 14
MATHS
What is the value of determinant |(1!,2!...

What is the value of determinant `|(1!,2!,3!),(2!,3!,4!),(3!,4!,5!)|` ?

A

0

B

12

C

24

D

36

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \( |(1!, 2!, 3!), (2!, 3!, 4!), (3!, 4!, 5!)| \), we will follow these steps: ### Step 1: Write the Determinant We start by writing the determinant in a more manageable form: \[ D = \begin{vmatrix} 1! & 2! & 3! \\ 2! & 3! & 4! \\ 3! & 4! & 5! \end{vmatrix} \] ### Step 2: Substitute Factorial Values Next, we substitute the factorial values: \[ D = \begin{vmatrix} 1 & 2 & 6 \\ 2 & 6 & 24 \\ 6 & 24 & 120 \end{vmatrix} \] ### Step 3: Calculate the Determinant Now, we will calculate the determinant using the formula for a 3x3 matrix: \[ D = a(ei - fh) - b(di - fg) + c(dh - eg) \] where \( a = 1, b = 2, c = 6 \), and the matrix elements are: \[ \begin{vmatrix} e & f \\ h & i \end{vmatrix} = \begin{vmatrix} 6 & 24 \\ 24 & 120 \end{vmatrix} \] Calculating \( ei - fh \): \[ ei = 6 \times 120 = 720 \] \[ fh = 24 \times 24 = 576 \] Thus, \[ ei - fh = 720 - 576 = 144 \] Now, we calculate \( di - fg \): \[ di = 2 \times 120 = 240 \] \[ fg = 6 \times 24 = 144 \] Thus, \[ di - fg = 240 - 144 = 96 \] Next, we calculate \( dh - eg \): \[ dh = 2 \times 24 = 48 \] \[ eg = 6 \times 6 = 36 \] Thus, \[ dh - eg = 48 - 36 = 12 \] ### Step 4: Substitute Back into the Determinant Formula Now substituting back into the determinant formula: \[ D = 1 \cdot 144 - 2 \cdot 96 + 6 \cdot 12 \] Calculating each term: \[ D = 144 - 192 + 72 \] Combining these: \[ D = 144 + 72 - 192 = 24 \] ### Final Answer Thus, the value of the determinant is: \[ \boxed{24} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |55 Videos
  • DEFINITE INTEGRATION

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS |65 Videos
  • DIFFERENTIAL EQUATION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |84 Videos

Similar Questions

Explore conceptually related problems

What is the value of the determinant |{:(5,3),(-3,-5):}| ?

Find the value of the determinant: |(4,-2),(3,1)|

Knowledge Check

  • The value of the determinant Delta=|(1!,2!,3!),(2!,3!,4!),(3!,4!,5!)| is

    A
    `2!`
    B
    `3!`
    C
    `4!`
    D
    `5!`
  • The value of the determinant |{:(1+x,2,3,4),(1,2+x,3,4),(1,2,3+x,4),(1,2,3,4+x):}| is

    A
    `x^(2)(x +10)`
    B
    `x^(3) (x + 10)`
    C
    `x^(4) (x+10)`
    D
    None ot these
  • Similar Questions

    Explore conceptually related problems

    Find the value of the determinant |{:(1,2,4),(3,4,9),(2,-1,6):}|

    Find the value of the determinant |{:(4,3),(2,7):}| .

    What is the value of 4/5 - 2/3

    Find the value of determinant [[2,-1],[-3,-4]]

    Find the value of the determinants: |{:(2, 5),(-1,3):}|

    What is the value of the determinant |0 2 0 2 3 4 4 5 6| ?