Home
Class 14
MATHS
If |(x,x^(2),1+x^(2)),(y,y^(2),1+y^(2)),...

If `|(x,x^(2),1+x^(2)),(y,y^(2),1+y^(2)),(z,z^(2),1+z^(2))|` where x, y, z are distinct what is |A| ?

A

A. 0

B

B. `x^(2) y-y^(2) x + xyz`

C

C. `(x - y) (y - z) (z - x)`

D

D. xyz

Text Solution

AI Generated Solution

The correct Answer is:
To find the determinant of the matrix \[ A = \begin{pmatrix} x & x^2 & 1 + x^2 \\ y & y^2 & 1 + y^2 \\ z & z^2 & 1 + z^2 \end{pmatrix} \] where \(x\), \(y\), and \(z\) are distinct, we will perform a series of row operations and simplifications. ### Step 1: Write the matrix We start with the matrix: \[ A = \begin{pmatrix} x & x^2 & 1 + x^2 \\ y & y^2 & 1 + y^2 \\ z & z^2 & 1 + z^2 \end{pmatrix} \] ### Step 2: Perform row operations We will perform the following row operations: - \(R_1 \leftarrow R_1 - R_2\) - \(R_3 \leftarrow R_3 - R_2\) This gives us: \[ \begin{pmatrix} x - y & x^2 - y^2 & (1 + x^2) - (1 + y^2) \\ y & y^2 & 1 + y^2 \\ z - y & z^2 - y^2 & (1 + z^2) - (1 + y^2) \end{pmatrix} \] Simplifying the entries, we have: \[ \begin{pmatrix} x - y & x^2 - y^2 & x^2 - y^2 \\ y & y^2 & 1 + y^2 \\ z - y & z^2 - y^2 & z^2 - y^2 \end{pmatrix} \] ### Step 3: Factor out common terms Notice that \(x^2 - y^2 = (x - y)(x + y)\) and \(z^2 - y^2 = (z - y)(z + y)\). Thus, we can factor out: \[ \begin{pmatrix} x - y & (x - y)(x + y) & (x - y)(x + y) \\ y & y^2 & 1 + y^2 \\ z - y & (z - y)(z + y) & (z - y)(z + y) \end{pmatrix} \] Taking \(x - y\) from the first row and \(z - y\) from the third row, we have: \[ (x - y)(z - y) \begin{pmatrix} 1 & x + y & x + y \\ y & y^2 & 1 + y^2 \\ 1 & z + y & z + y \end{pmatrix} \] ### Step 4: Make the third row zero Next, we perform the operation \(R_3 \leftarrow R_3 - R_1\): \[ \begin{pmatrix} 1 & x + y & x + y \\ y & y^2 & 1 + y^2 \\ 0 & (z + y) - (x + y) & (z + y) - (x + y) \end{pmatrix} \] This simplifies to: \[ \begin{pmatrix} 1 & x + y & x + y \\ y & y^2 & 1 + y^2 \\ 0 & z - x & z - x \end{pmatrix} \] ### Step 5: Calculate the determinant Now, we can compute the determinant of the resulting matrix. The determinant can be calculated along the third row: \[ \text{Det}(A) = (x - y)(z - y)(z - x) \cdot \begin{vmatrix} 1 & x + y & x + y \\ y & y^2 & 1 + y^2 \\ 0 & z - x & z - x \end{vmatrix} \] Calculating the determinant yields: \[ = (x - y)(z - y)(z - x) \cdot 0 = 0 \] ### Conclusion Thus, the determinant of the matrix \(A\) is: \[ |A| = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |55 Videos
  • DEFINITE INTEGRATION

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS |65 Videos
  • DIFFERENTIAL EQUATION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |84 Videos

Similar Questions

Explore conceptually related problems

[[x,x^2, 1+x^2],[y, y^2, 1+y^2],[z, z^2, 1+z^2]] where x,y,z are distinct. What is |A|.

If |{:(x,x^2,1+x^3),(y,y^2,1+y^3),(z, z^2,1+z^3):}|=0 then relation of x,y and z is

If |(x, x^2, x^3 +1), (y, y^2, y^3+1), (z, z^2, z^3+1)| = 0 and x ,y and z are not equal to any other, prove that, xyz = -1

If |[x^3+1, x^2, x] , [y^3+1, y^2, y] , [z^3+1, z^2, z]|=0 and x, y, z are all different then prove that xyz=-1

Prove that : |{:((y+z)^(2),x^(2),x^(2)),(y^(2),(x+z)^(2),y^(2)),(z^(2),z^(2),(x+y)^(2)):}|=2xyz (x+y+z)^(3)

Prove that |{:(x^(2),,x^(2)-(y-z)^(2),,yz),(y^(2),,y^(2)-(z-x)^(2),,zx),(z^(2),,z^(2)-(x-y)^(2),,xy):}| =(x-y) (y-z) (z-x)(x+y+z) (x^(2)+y^(2)+z^(2))

PUNEET DOGRA-DETERMINANTS -PREV YEAR QUESTIONS
  1. If |(x,x^(2),1+x^(2)),(y,y^(2),1+y^(2)),(z,z^(2),1+z^(2))| where x, y,...

    Text Solution

    |

  2. What is the value of determinant |(1!,2!,3!),(2!,3!,4!),(3!,4!,5!)| ?

    Text Solution

    |

  3. What are the values of x that satisfy equation |(x,0,2),(2x,2,1),(1,1,...

    Text Solution

    |

  4. The factor of the determinant |(x+a,b,c),(a,x+b,c),(a,b,x+c)| is

    Text Solution

    |

  5. If |(x,-3i,1),(y,1,i),(0,2i,-i)|=6+11i. then what are the value of x a...

    Text Solution

    |

  6. A is a square matrix of order 3 such that its determinant is 4. What i...

    Text Solution

    |

  7. If A is a square matrix of order n gt 1, then which one of the followi...

    Text Solution

    |

  8. Let A and B be (3 xx 3) matrices with det A = 4 and det B = 3 What i...

    Text Solution

    |

  9. Let A and B be (3 xx 3) matrices with det A = 4 and det B = 3 What i...

    Text Solution

    |

  10. If in a triangle ABC, |{:(1, sin A ,sin^(2)A),(1,sin B , sin^(2)B),(1,...

    Text Solution

    |

  11. Find the values of x,y,z if the matrix A=[(0,3y,z),(x,y,-z),(x,-y,z)] ...

    Text Solution

    |

  12. If u, v and w (all positive) are the pth, qth, and rth terms of a GP, ...

    Text Solution

    |

  13. If a + b + c = 0, then one of the solution of |(a-x,c,b),(c,b-x,a),(b,...

    Text Solution

    |

  14. Which one of the following factors does the expansions of the determin...

    Text Solution

    |

  15. The system of equation 2x + y - 3z = 5 3x - 2y + 2z = 5 5x - 3y ...

    Text Solution

    |

  16. The value of the determinants |("cos"^(2)(theta)/(2),"sin"^(2)(theta)/...

    Text Solution

    |

  17. The system of equation kx + y + z = 1, x + ky + z = k and x + y + kz =...

    Text Solution

    |

  18. If p + q + r = a + b + c = 0, then the determinant |(pa,qb,rc),(qc,ra,...

    Text Solution

    |

  19. The value of the determinant : |(1-alpha,alpha-alpha^(2),alpha^(2)),(1...

    Text Solution

    |

  20. If B is a non-singular matrix and A is a square matrix, then the value...

    Text Solution

    |

  21. What is the value of the determinant ? |(1,1,1),(1,1+xyz,1),(1,1,1+x...

    Text Solution

    |