Home
Class 14
MATHS
The value of the determinants |("cos"^(2...

The value of the determinants `|("cos"^(2)(theta)/(2),"sin"^(2)(theta)/(2)),("sin"^(2) (theta)/(2),"cos"^(2) (theta)/(2))|` for all values of `theta`, is :

A

1

B

`cos theta`

C

`sin theta`

D

`cos 2theta`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} \cos^2\left(\frac{\theta}{2}\right) & \sin^2\left(\frac{\theta}{2}\right) \\ \sin^2\left(\frac{\theta}{2}\right) & \cos^2\left(\frac{\theta}{2}\right) \end{vmatrix} \] we can use the formula for the determinant of a 2x2 matrix: \[ D = ad - bc \] where \( a = \cos^2\left(\frac{\theta}{2}\right) \), \( b = \sin^2\left(\frac{\theta}{2}\right) \), \( c = \sin^2\left(\frac{\theta}{2}\right) \), and \( d = \cos^2\left(\frac{\theta}{2}\right) \). ### Step 1: Calculate the determinant Substituting the values into the determinant formula: \[ D = \cos^2\left(\frac{\theta}{2}\right) \cdot \cos^2\left(\frac{\theta}{2}\right) - \sin^2\left(\frac{\theta}{2}\right) \cdot \sin^2\left(\frac{\theta}{2}\right) \] This simplifies to: \[ D = \cos^4\left(\frac{\theta}{2}\right) - \sin^4\left(\frac{\theta}{2}\right) \] ### Step 2: Apply the difference of squares The expression \( \cos^4\left(\frac{\theta}{2}\right) - \sin^4\left(\frac{\theta}{2}\right) \) can be factored using the difference of squares: \[ D = \left(\cos^2\left(\frac{\theta}{2}\right) - \sin^2\left(\frac{\theta}{2}\right)\right) \left(\cos^2\left(\frac{\theta}{2}\right) + \sin^2\left(\frac{\theta}{2}\right)\right) \] ### Step 3: Simplify using trigonometric identities We know from the Pythagorean identity that: \[ \cos^2\left(\frac{\theta}{2}\right) + \sin^2\left(\frac{\theta}{2}\right) = 1 \] Thus, we can simplify \( D \): \[ D = \left(\cos^2\left(\frac{\theta}{2}\right) - \sin^2\left(\frac{\theta}{2}\right)\right) \cdot 1 \] So, \[ D = \cos^2\left(\frac{\theta}{2}\right) - \sin^2\left(\frac{\theta}{2}\right) \] ### Step 4: Use the double angle identity Using the double angle identity for cosine, we have: \[ \cos^2\left(\frac{\theta}{2}\right) - \sin^2\left(\frac{\theta}{2}\right) = \cos\left(\theta\right) \] Thus, the value of the determinant is: \[ D = \cos\left(\theta\right) \] ### Final Answer The value of the determinant for all values of \( \theta \) is: \[ \cos\left(\theta\right) \] ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |55 Videos
  • DEFINITE INTEGRATION

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS |65 Videos
  • DIFFERENTIAL EQUATION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |84 Videos

Similar Questions

Explore conceptually related problems

The value of the determinant |{:("cos"^(2)(theta)/(2),"sin"^(2)(theta)/(2)),("sin"^(2)(theta)/(2),"cos"^(2)(theta)/(2)):}| for all values of theta , is

Value of sec^(2)theta-(sin^(2)theta-2sin^(4)theta)/(2cos^(4)theta-cos^(2)theta) is

If A=sin^(2)theta+cos^(4)theta, then for all real values of theta

If A= cos^(4)theta+sin^(2)theta , then for all values of theta :

The value of the expression cos^(6)theta+sin^(6)theta+3sin^(2)theta cos^(2)theta=

The value of (2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta))/(cos^(4)theta-sin^(4)theta-2cos^(2)theta) is :

The value of the expression sin^(6)theta+cos^(6)theta+3sin^(2)theta*cos^(2)theta equals

What is the simplified value of [(cos^(2) theta)/(1+sin theta)- (sin^(2) theta)/(1 + cos theta)]^(2) ?

PUNEET DOGRA-DETERMINANTS -PREV YEAR QUESTIONS
  1. Which one of the following factors does the expansions of the determin...

    Text Solution

    |

  2. The system of equation 2x + y - 3z = 5 3x - 2y + 2z = 5 5x - 3y ...

    Text Solution

    |

  3. The value of the determinants |("cos"^(2)(theta)/(2),"sin"^(2)(theta)/...

    Text Solution

    |

  4. The system of equation kx + y + z = 1, x + ky + z = k and x + y + kz =...

    Text Solution

    |

  5. If p + q + r = a + b + c = 0, then the determinant |(pa,qb,rc),(qc,ra,...

    Text Solution

    |

  6. The value of the determinant : |(1-alpha,alpha-alpha^(2),alpha^(2)),(1...

    Text Solution

    |

  7. If B is a non-singular matrix and A is a square matrix, then the value...

    Text Solution

    |

  8. What is the value of the determinant ? |(1,1,1),(1,1+xyz,1),(1,1,1+x...

    Text Solution

    |

  9. If |(x,y,0),(0,x,y),(y,0,x)| = 0, then which one of the following is c...

    Text Solution

    |

  10. If A=[(cos alpha,sin alpha),(-sin alpha,cos alpha)] and A. adj A=[(k,...

    Text Solution

    |

  11. If a ne b ne c, then one value of x which satisfies the equation. [(0,...

    Text Solution

    |

  12. Let ax^(3) + bx^(2) + cx + d |(x+1,2x,3x),(2x+3,x+1,x),(2-x,3x+4,5x-...

    Text Solution

    |

  13. Let ax^(3) + bx^(2) + cx + d |(x+1,2x,3x),(2x+3,x+1,x),(2-x,3x+4,5x-...

    Text Solution

    |

  14. If A is a square matrix of order 3 and det A = 5, then what is det [(2...

    Text Solution

    |

  15. Which of the following determinants have value 'zero' ? 1. |(41,1,5)...

    Text Solution

    |

  16. If the value of the determinant |(a,1,1),(1,b,1),(1,1,c)| is positive,...

    Text Solution

    |

  17. Consider the following statements in respect of the determinant |("cos...

    Text Solution

    |

  18. If a, b and c are real numbers, then the value of the determinant |(1-...

    Text Solution

    |

  19. Consider the following statements with respect to the square matrices ...

    Text Solution

    |

  20. The value of |(1,1,1),(1,1+x,1),(1,1,1+y)| is

    Text Solution

    |