Home
Class 14
MATHS
Let ax^(3) + bx^(2) + cx + d |(x+1,2x,...

Let `ax^(3) + bx^(2) + cx + d`
`|(x+1,2x,3x),(2x+3,x+1,x),(2-x,3x+4,5x-1)|`, then
What is the value of c ?

A

-1

B

34

C

35

D

50

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( c \) in the polynomial \( ax^3 + bx^2 + cx + d \) such that it is less than the determinant given by: \[ \begin{vmatrix} x + 1 & 2x & 3x \\ 2x + 3 & x + 1 & x \\ 2 - x & 3x + 4 & 5x - 1 \end{vmatrix} \] ### Step 1: Set Up the Determinant We start by writing the determinant explicitly: \[ D = \begin{vmatrix} x + 1 & 2x & 3x \\ 2x + 3 & x + 1 & x \\ 2 - x & 3x + 4 & 5x - 1 \end{vmatrix} \] ### Step 2: Differentiate the Determinant To find \( c \), we need to differentiate the determinant \( D \) with respect to \( x \). We denote the derivative of the determinant as \( D' \). ### Step 3: Calculate the Derivative We can differentiate the determinant using the properties of determinants. We will differentiate each row with respect to \( x \) and evaluate at \( x = 0 \). 1. Differentiate the first row: \[ \frac{d}{dx}(x + 1) = 1, \quad \frac{d}{dx}(2x) = 2, \quad \frac{d}{dx}(3x) = 3 \] So the first row becomes \( (1, 2, 3) \). 2. Differentiate the second row: \[ \frac{d}{dx}(2x + 3) = 2, \quad \frac{d}{dx}(x + 1) = 1, \quad \frac{d}{dx}(x) = 1 \] So the second row becomes \( (2, 1, 1) \). 3. Differentiate the third row: \[ \frac{d}{dx}(2 - x) = -1, \quad \frac{d}{dx}(3x + 4) = 3, \quad \frac{d}{dx}(5x - 1) = 5 \] So the third row becomes \( (-1, 3, 5) \). ### Step 4: Evaluate the Determinant at \( x = 0 \) Now we evaluate the determinant \( D' \) at \( x = 0 \): \[ D' = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \\ -1 & 3 & 5 \end{vmatrix} \] ### Step 5: Calculate the Determinant Calculating the determinant: \[ D' = 1 \begin{vmatrix} 1 & 1 \\ 3 & 5 \end{vmatrix} - 2 \begin{vmatrix} 2 & 1 \\ -1 & 5 \end{vmatrix} + 3 \begin{vmatrix} 2 & 1 \\ -1 & 3 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} 1 & 1 \\ 3 & 5 \end{vmatrix} = (1)(5) - (1)(3) = 5 - 3 = 2 \) 2. \( \begin{vmatrix} 2 & 1 \\ -1 & 5 \end{vmatrix} = (2)(5) - (1)(-1) = 10 + 1 = 11 \) 3. \( \begin{vmatrix} 2 & 1 \\ -1 & 3 \end{vmatrix} = (2)(3) - (1)(-1) = 6 + 1 = 7 \) Putting it all together: \[ D' = 1(2) - 2(11) + 3(7) = 2 - 22 + 21 = 1 \] ### Step 6: Relate \( D' \) to \( c \) Since we have shown that \( D' = c \), we conclude: \[ c = 1 \] ### Conclusion The value of \( c \) is \( 1 \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |55 Videos
  • DEFINITE INTEGRATION

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS |65 Videos
  • DIFFERENTIAL EQUATION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |84 Videos

Similar Questions

Explore conceptually related problems

Let ax^(3) + bx^(2) + cx + d |(x+1,2x,3x),(2x+3,x+1,x),(2-x,3x+4,5x-1)| , then What is the value of a + b + c + d ?

Let ax^3+bx^2+cx+d=|{:(3x,x+1,x-1),(x-3,-2x,x+2),(x+3,x-4,5x):}| then the value of d is

If ax^4+bx^3+cx^2+dx+e=|[2x,x-1,x+1] , [x+1, x^2-x,x-1] , [x-1,x+1,3x]| then the value of c is

Let the equation x^(5) + x^(3) + x^(2) + 2 = 0 has roots x_(1), x_(2), x_(3), x_(4) and x_(5), then find the value of (x_(2)^(2) - 1)(x_(3)^(2) - 1)(x_(4)^(2) - 1)(x_(5)^(2) - 1).

If x satisfies the cubic equation ax^(3)+bx^(2)+cx+d=0 such that cos^(-1)(x)+cos^(-1)(2x)+cos^(-1)(3x)=pi , then find the value of (b+c)-(a+d) .

Let P(x)=x^(4)+ax^(3)+bx^(2)+cx+d be a polynomial such that P(1)=1,P(2)=8,+P(3)=27,P(4)=64 then the value of 152-P(5) is

PUNEET DOGRA-DETERMINANTS -PREV YEAR QUESTIONS
  1. If A=[(cos alpha,sin alpha),(-sin alpha,cos alpha)] and A. adj A=[(k,...

    Text Solution

    |

  2. If a ne b ne c, then one value of x which satisfies the equation. [(0,...

    Text Solution

    |

  3. Let ax^(3) + bx^(2) + cx + d |(x+1,2x,3x),(2x+3,x+1,x),(2-x,3x+4,5x-...

    Text Solution

    |

  4. Let ax^(3) + bx^(2) + cx + d |(x+1,2x,3x),(2x+3,x+1,x),(2-x,3x+4,5x-...

    Text Solution

    |

  5. If A is a square matrix of order 3 and det A = 5, then what is det [(2...

    Text Solution

    |

  6. Which of the following determinants have value 'zero' ? 1. |(41,1,5)...

    Text Solution

    |

  7. If the value of the determinant |(a,1,1),(1,b,1),(1,1,c)| is positive,...

    Text Solution

    |

  8. Consider the following statements in respect of the determinant |("cos...

    Text Solution

    |

  9. If a, b and c are real numbers, then the value of the determinant |(1-...

    Text Solution

    |

  10. Consider the following statements with respect to the square matrices ...

    Text Solution

    |

  11. The value of |(1,1,1),(1,1+x,1),(1,1,1+y)| is

    Text Solution

    |

  12. Consider the following statements I. Determinant is a square matrix....

    Text Solution

    |

  13. If |(a,b,0),(0,a,b),(b,0,a)| = 0, then which one of the following is c...

    Text Solution

    |

  14. If a ne b ne c all are positive, then the value of determinant |(a,b,c...

    Text Solution

    |

  15. If any two adjacent rows or columns of a determinant are interchanged ...

    Text Solution

    |

  16. The determinant of a skew symmetric matrix of odd order is

    Text Solution

    |

  17. If C(ij) is the cofactor of the element a(ij) of the determinant |{:(2...

    Text Solution

    |

  18. What is the value of the determinant |(1,bc,a(b+c)),(1,ca,b(c+a)),(1,a...

    Text Solution

    |

  19. If D is determinant of order 3 and D' is the determinant obtained by r...

    Text Solution

    |

  20. Consider the following statements I. A matrix is not a number. II....

    Text Solution

    |