Home
Class 14
MATHS
Consider the following statements in res...

Consider the following statements in respect of the determinant `|("cos"^(2)(alpha)/(2),"sin"^(2)(alpha)/(2)),("sin"^(2) (beta)/(2),"cos"^(2) (beta)/(2))|` where `alpha, beta` are complementary angles.
I. The value of the determinant is `(1)/(sqrt(2)) "cos" ((alpha - beta)/(2))`.
II. The maximum value of the determinant is `(1)/(sqrt(2))`.
Which of the above statement(s) is/are correct ?

A

A) Only I

B

B) Only II

C

C) Both I and II

D

D) Neither I nor II

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given determinant problem, we need to evaluate the determinant: \[ D = \begin{vmatrix} \frac{\cos^2(\alpha)}{2} & \frac{\sin^2(\alpha)}{2} \\ \frac{\sin^2(\beta)}{2} & \frac{\cos^2(\beta)}{2} \end{vmatrix} \] where \(\alpha\) and \(\beta\) are complementary angles, meaning \(\alpha + \beta = 90^\circ\). ### Step 1: Calculate the determinant Using the formula for the determinant of a 2x2 matrix: \[ D = ad - bc \] where \(a = \frac{\cos^2(\alpha)}{2}\), \(b = \frac{\sin^2(\alpha)}{2}\), \(c = \frac{\sin^2(\beta)}{2}\), and \(d = \frac{\cos^2(\beta)}{2}\). Substituting the values, we get: \[ D = \left(\frac{\cos^2(\alpha)}{2}\right) \left(\frac{\cos^2(\beta)}{2}\right) - \left(\frac{\sin^2(\alpha)}{2}\right) \left(\frac{\sin^2(\beta)}{2}\right) \] This simplifies to: \[ D = \frac{1}{4} \left(\cos^2(\alpha) \cos^2(\beta) - \sin^2(\alpha) \sin^2(\beta)\right) \] ### Step 2: Apply the identity for cosine Using the identity \( \cos^2(A) - \sin^2(B) = \cos(A + B) \) for complementary angles, we can rewrite: \[ D = \frac{1}{4} \left(\cos^2(\alpha) \cos^2(\beta) - \sin^2(\alpha) \sin^2(\beta)\right) = \frac{1}{4} \cdot \cos\left(\alpha + \beta\right) = \frac{1}{4} \cdot \cos(90^\circ) = 0 \] However, we need to express this in terms of half angles. Using the half-angle formulas: \[ \cos^2(\theta) = \frac{1 + \cos(2\theta)}{2}, \quad \sin^2(\theta) = \frac{1 - \cos(2\theta)}{2} \] We can express the determinant in terms of \(\alpha\) and \(\beta\). ### Step 3: Substitute complementary angles Since \(\beta = 90^\circ - \alpha\), we have: \[ \cos^2(\beta) = \sin^2(\alpha), \quad \sin^2(\beta) = \cos^2(\alpha) \] Thus, we can rewrite the determinant: \[ D = \frac{1}{4} \left(\cos^2(\alpha) \sin^2(\alpha) - \sin^2(\alpha) \cos^2(\alpha)\right) = \frac{1}{4} \left(\cos^2(\alpha) - \sin^2(\alpha)\right) \] ### Step 4: Final expression Using the cosine of the difference of angles: \[ D = \frac{1}{4} \cos(\alpha - \beta) \] Since \(\beta = 90^\circ - \alpha\), we have: \[ D = \frac{1}{4} \cos(\alpha - (90^\circ - \alpha)) = \frac{1}{4} \cos(2\alpha - 90^\circ) = \frac{1}{4} \sin(2\alpha) \] ### Step 5: Maximum value The maximum value of \(\sin(2\alpha)\) is \(1\), thus: \[ \text{Maximum value of } D = \frac{1}{4} \cdot 1 = \frac{1}{4} \] ### Conclusion 1. The value of the determinant is \(\frac{1}{4} \cos(\alpha - \beta)\) which is not equal to \(\frac{1}{\sqrt{2}} \cos\left(\frac{\alpha - \beta}{2}\right)\) as stated in statement I. 2. The maximum value of the determinant is \(\frac{1}{4}\), not \(\frac{1}{\sqrt{2}}\) as stated in statement II. Thus, both statements are incorrect.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |55 Videos
  • DEFINITE INTEGRATION

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS |65 Videos
  • DIFFERENTIAL EQUATION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |84 Videos

Similar Questions

Explore conceptually related problems

Consider the following statements in respect of the determinant det[[cos^(2)((alpha)/(2)),sin^(2)((alpha)/(2))sin^(2)((beta)/(2)),cos^(2)((beta)/(2))]] where alpha,beta are complementary angles

Prove that (cos alpha+cos beta)^(2)+(sin(alpha)+sin beta)^(2)=4cos^(2)((alpha-beta)/(2))

tan ^ (2) alpha-tan ^ (2) beta = (sin ^ (2) alpha-sin ^ (2) beta) / (cos ^ (2) alpha cos ^ (2) beta)

csc^(2)(alpha+beta)-sin^(2)(beta-alpha)+sin^(2)(2 alpha-beta)=cos^(2)(alpha-beta) where alpha,beta in(0,(pi)/(2)), then sin(alpha-beta) is equals

Prove that : (cos alpha+cos beta)^(2)+(sin alpha+sin beta)^(2)=4cos^(2)((alpha-beta)/(2))

Prove that (cos alpha+cos beta)^(2)+(sin alpha+sin beta)^(2)=4cos^(2)((alpha-beta)/(2))

If (cos^(4)alpha)/(cos^(2)beta)+(sin^(4)alpha)/(sin^(2)beta)=1 then (cos^(4)beta)/(cos^(2)alpha)+(sin^(4)beta)/(sin^(2)alpha)=?

If cos^(2)alpha-sin^(2)alpha=tan^(2)beta , then the value of cos^(2)beta-sin^(2)beta is

(cos alpha+cos beta)^(2)+(s in alpha+s in beta)^(2)=lambda cos^(2)((alpha-beta)/(2)) write the value of lambda

(cos alpha + cos beta) ^ (2) + (sin alpha-sin beta) ^ (2) = 4 (cos ^ (2) (alpha + beta)) / (2)

PUNEET DOGRA-DETERMINANTS -PREV YEAR QUESTIONS
  1. Which of the following determinants have value 'zero' ? 1. |(41,1,5)...

    Text Solution

    |

  2. If the value of the determinant |(a,1,1),(1,b,1),(1,1,c)| is positive,...

    Text Solution

    |

  3. Consider the following statements in respect of the determinant |("cos...

    Text Solution

    |

  4. If a, b and c are real numbers, then the value of the determinant |(1-...

    Text Solution

    |

  5. Consider the following statements with respect to the square matrices ...

    Text Solution

    |

  6. The value of |(1,1,1),(1,1+x,1),(1,1,1+y)| is

    Text Solution

    |

  7. Consider the following statements I. Determinant is a square matrix....

    Text Solution

    |

  8. If |(a,b,0),(0,a,b),(b,0,a)| = 0, then which one of the following is c...

    Text Solution

    |

  9. If a ne b ne c all are positive, then the value of determinant |(a,b,c...

    Text Solution

    |

  10. If any two adjacent rows or columns of a determinant are interchanged ...

    Text Solution

    |

  11. The determinant of a skew symmetric matrix of odd order is

    Text Solution

    |

  12. If C(ij) is the cofactor of the element a(ij) of the determinant |{:(2...

    Text Solution

    |

  13. What is the value of the determinant |(1,bc,a(b+c)),(1,ca,b(c+a)),(1,a...

    Text Solution

    |

  14. If D is determinant of order 3 and D' is the determinant obtained by r...

    Text Solution

    |

  15. Consider the following statements I. A matrix is not a number. II....

    Text Solution

    |

  16. The roots of the equation |(1,t-1,1),(t-1,1,1),(1,1,t-1)| = 0 are

    Text Solution

    |

  17. The value of the determinant |(m,n,p),(p,m,n),(n,p,m)|

    Text Solution

    |

  18. If each element in a row of a determinant is multiplied by the same fa...

    Text Solution

    |

  19. If two rows (or column) are identical or Proportional the value of the...

    Text Solution

    |

  20. If |(8,-5,1),(5,x,1),(6,3,1)| = 2, then what is the value of x ?

    Text Solution

    |