Home
Class 14
MATHS
What is the value of |(1,omega,2 omega^(...

What is the value of `|(1,omega,2 omega^(2)),(2,2omega^(2),4 omega^(3)),(3,3 omega^(3),6 omega^(4))|`, where `omega` is the cube root of the unity ?

A

A) 0

B

B) 1

C

C) 2

D

D) 3

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} 1 & \omega & 2\omega^2 \\ 2 & 2\omega^2 & 4\omega^3 \\ 3 & 3\omega^3 & 6\omega^4 \end{vmatrix} \] where \(\omega\) is the cube root of unity, we will follow these steps: ### Step 1: Understand properties of \(\omega\) Since \(\omega\) is a cube root of unity, we know that: \[ \omega^3 = 1 \quad \text{and} \quad \omega^4 = \omega \] ### Step 2: Rewrite the determinant Using the properties of \(\omega\), we can rewrite the determinant as: \[ D = \begin{vmatrix} 1 & \omega & 2\omega^2 \\ 2 & 2\omega^2 & 4 \\ 3 & 3 & 6\omega \end{vmatrix} \] ### Step 3: Factor out constants from rows We can factor out constants from the second and third rows: - From the second row, we can factor out \(2\). - From the third row, we can factor out \(3\). Thus, we have: \[ D = 2 \cdot 3 \cdot \begin{vmatrix} 1 & \omega & 2\omega^2 \\ 1 & \omega^2 & 2 \\ 1 & 1 & 2\omega \end{vmatrix} \] This simplifies to: \[ D = 6 \cdot \begin{vmatrix} 1 & \omega & 2\omega^2 \\ 1 & \omega^2 & 2 \\ 1 & 1 & 2\omega \end{vmatrix} \] ### Step 4: Expand the determinant Now we will expand the determinant: \[ \begin{vmatrix} 1 & \omega & 2\omega^2 \\ 1 & \omega^2 & 2 \\ 1 & 1 & 2\omega \end{vmatrix} \] Using the first row for expansion: \[ = 1 \cdot \begin{vmatrix} \omega^2 & 2 \\ 1 & 2\omega \end{vmatrix} - \omega \cdot \begin{vmatrix} 1 & 2 \\ 1 & 2\omega \end{vmatrix} + 2\omega^2 \cdot \begin{vmatrix} 1 & \omega^2 \\ 1 & 1 \end{vmatrix} \] ### Step 5: Calculate the 2x2 determinants Calculating the 2x2 determinants: 1. \(\begin{vmatrix} \omega^2 & 2 \\ 1 & 2\omega \end{vmatrix} = \omega^2 \cdot 2\omega - 2 \cdot 1 = 2\omega^3 - 2 = 2 - 2 = 0\) 2. \(\begin{vmatrix} 1 & 2 \\ 1 & 2\omega \end{vmatrix} = 1 \cdot 2\omega - 2 \cdot 1 = 2\omega - 2\) 3. \(\begin{vmatrix} 1 & \omega^2 \\ 1 & 1 \end{vmatrix} = 1 \cdot 1 - \omega^2 \cdot 1 = 1 - \omega^2\) ### Step 6: Substitute back into the determinant Substituting these values back into the determinant: \[ = 1 \cdot 0 - \omega(2\omega - 2) + 2\omega^2(1 - \omega^2) \] This simplifies to: \[ = 0 - 2\omega^2 + 2\omega^2(1 - \omega^2) \] ### Step 7: Simplify further Now we simplify: \[ = -2\omega^2 + 2\omega^2 - 2\omega^4 = -2\omega^4 \] Since \(\omega^4 = \omega\): \[ = -2\omega \] ### Step 8: Final determinant value Now substituting back into \(D\): \[ D = 6 \cdot (-2\omega) = -12\omega \] ### Step 9: Evaluate using \(\omega^3 = 1\) Since \(\omega\) is a cube root of unity, we can conclude that the determinant evaluates to zero because the rows are linearly dependent. Thus, the final value of the determinant is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |55 Videos
  • DEFINITE INTEGRATION

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS |65 Videos
  • DIFFERENTIAL EQUATION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |84 Videos

Similar Questions

Explore conceptually related problems

What is the value of |{:(1,omega,2omega^(2)),(2,2omega^(2),4omega^(3)),(3,3omega^(3),6omega^(4)):}| , where omega is the cube root of unity ?

What is the value of |(1-i, omega^2,-omega), (omega^2+i,omega,-i), (1-2i-omega^2,omega^2-omega,i-omega)|, where omega is the cube root of unity?

The value of the determinant |(1,omega^(3),omega^(5)),(omega^(3),1,omega^(4)),(omega^(5),omega^(4),1)| , where omega is an imaginary cube root of unity, is

Find the value of |{:(" "1+i," "i omega," "i omega^(2)),(" "i omega," "i omega^(2)+1," "i omega^(3)),(i omega^(2), i omega^(3), " "i omega^(4)+1):}| , where omega is a non real cube root of unity and i = sqrt(-1) .

What is the value of |{:(" "1-i," "omega^(2)," "-omega),(" "omega^(2)+i," "omega," "-i),(1-2i-omega^(2),omega^(2)-omega,i-omega):}| , where omega is the cube root of unity ?

Evaluate |(1,omega,omega^2),(omega,omega^2,1),(omega^2,omega,omega)| where omega is cube root of unity.

find the value of |[1,1,1],[1,omega^(2),omega],[1,omega,omega^(2)]| where omega is a cube root of unity

Evaluate: | (1, 1, 1), (1, omega^2, omega), (1, omega, omega^2)| (where omega is an imaginary cube root unity).

PUNEET DOGRA-DETERMINANTS -PREV YEAR QUESTIONS
  1. If any two adjacent rows or columns of a determinant are interchanged ...

    Text Solution

    |

  2. The determinant of a skew symmetric matrix of odd order is

    Text Solution

    |

  3. If C(ij) is the cofactor of the element a(ij) of the determinant |{:(2...

    Text Solution

    |

  4. What is the value of the determinant |(1,bc,a(b+c)),(1,ca,b(c+a)),(1,a...

    Text Solution

    |

  5. If D is determinant of order 3 and D' is the determinant obtained by r...

    Text Solution

    |

  6. Consider the following statements I. A matrix is not a number. II....

    Text Solution

    |

  7. The roots of the equation |(1,t-1,1),(t-1,1,1),(1,1,t-1)| = 0 are

    Text Solution

    |

  8. The value of the determinant |(m,n,p),(p,m,n),(n,p,m)|

    Text Solution

    |

  9. If each element in a row of a determinant is multiplied by the same fa...

    Text Solution

    |

  10. If two rows (or column) are identical or Proportional the value of the...

    Text Solution

    |

  11. If |(8,-5,1),(5,x,1),(6,3,1)| = 2, then what is the value of x ?

    Text Solution

    |

  12. If A = ((1,2),(2,3))and = ((1,0),(1,0)), then what is the value of det...

    Text Solution

    |

  13. What is the value of |(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))| ?

    Text Solution

    |

  14. What is the value of |(1,omega,2 omega^(2)),(2,2omega^(2),4 omega^(3))...

    Text Solution

    |

  15. The root of the equation |(x,alpha,1),(beta,x,1),(beta,gamma,1)| = 0 a...

    Text Solution

    |

  16. If |(p,-q,0),(0,p,q),(q,0,p)|=0, then which one of the following is co...

    Text Solution

    |

  17. What is the value of the determinant |(a-b,b+c,a),(b-c,c+a,b),(c-a,a...

    Text Solution

    |

  18. What is the value of the determinant ? |(x+1,x+2,x+4),(x+3,x+5,x+8),...

    Text Solution

    |

  19. If 5 and 7 are the roots of the equation |(x,4,5),(7,x,7),(5,8,x)| = 0...

    Text Solution

    |

  20. If |(a,b,c),(l,m,n),(p,q,r)|=2, then what is the value of the determin...

    Text Solution

    |