Home
Class 14
MATHS
What are the values of (x,y) satisfying ...

What are the values of (x,y) satisfying the simultaneous equations `sin^(-1)x+sin^(-1)y=(2pi)/(3)` and `cos^(-1)x-cos^(-1)y=(pi)/(3)`?

A

A. (0,1)

B

B. `((1)/(2),1)`

C

C. `(1,(1)/(2))`

D

D. `((sqrt3)/(2),1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the simultaneous equations \( \sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3} \) and \( \cos^{-1} x - \cos^{-1} y = -\frac{\pi}{3} \), we will follow these steps: ### Step 1: Write down the equations The two equations we have are: 1. \( \sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3} \) (Equation 1) 2. \( \cos^{-1} x - \cos^{-1} y = -\frac{\pi}{3} \) (Equation 2) ### Step 2: Rearranging Equation 2 From Equation 2, we can rearrange it to: \[ \cos^{-1} x = \cos^{-1} y - \frac{\pi}{3} \] ### Step 3: Add both equations Now, we can add Equation 1 and Equation 2: \[ \sin^{-1} x + \sin^{-1} y + \cos^{-1} x - \cos^{-1} y = \frac{2\pi}{3} - \frac{\pi}{3} \] This simplifies to: \[ \sin^{-1} x + \cos^{-1} x + \sin^{-1} y - \cos^{-1} y = \frac{\pi}{3} \] ### Step 4: Use the identity We know that: \[ \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \] Thus, we can substitute this into our equation: \[ \frac{\pi}{2} + \sin^{-1} y - \cos^{-1} y = \frac{\pi}{3} \] ### Step 5: Isolate \( \sin^{-1} y - \cos^{-1} y \) Rearranging gives us: \[ \sin^{-1} y - \cos^{-1} y = \frac{\pi}{3} - \frac{\pi}{2} \] Calculating the right-hand side: \[ \frac{\pi}{3} - \frac{\pi}{2} = \frac{2\pi - 3\pi}{6} = -\frac{\pi}{6} \] So we have: \[ \sin^{-1} y - \cos^{-1} y = -\frac{\pi}{6} \] ### Step 6: Use the identity for \( y \) We also know: \[ \sin^{-1} y + \cos^{-1} y = \frac{\pi}{2} \] Now we can add these two equations: 1. \( \sin^{-1} y - \cos^{-1} y = -\frac{\pi}{6} \) 2. \( \sin^{-1} y + \cos^{-1} y = \frac{\pi}{2} \) Adding them gives: \[ 2 \sin^{-1} y = \frac{\pi}{2} - \frac{\pi}{6} \] Calculating the right-hand side: \[ \frac{\pi}{2} - \frac{\pi}{6} = \frac{3\pi - \pi}{6} = \frac{2\pi}{6} = \frac{\pi}{3} \] Thus: \[ 2 \sin^{-1} y = \frac{\pi}{3} \] Dividing by 2: \[ \sin^{-1} y = \frac{\pi}{6} \] ### Step 7: Find \( y \) Taking the sine of both sides: \[ y = \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \] ### Step 8: Substitute \( y \) back to find \( x \) Now substitute \( y \) back into Equation 1: \[ \sin^{-1} x + \sin^{-1}\left(\frac{1}{2}\right) = \frac{2\pi}{3} \] Since \( \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6} \): \[ \sin^{-1} x + \frac{\pi}{6} = \frac{2\pi}{3} \] Subtracting \( \frac{\pi}{6} \) from both sides: \[ \sin^{-1} x = \frac{2\pi}{3} - \frac{\pi}{6} \] Calculating the right-hand side: \[ \frac{2\pi}{3} - \frac{\pi}{6} = \frac{4\pi - \pi}{6} = \frac{3\pi}{6} = \frac{\pi}{2} \] ### Step 9: Find \( x \) Taking the sine of both sides: \[ x = \sin\left(\frac{\pi}{2}\right) = 1 \] ### Final Answer Thus, the values of \( (x, y) \) are: \[ (x, y) = \left(1, \frac{1}{2}\right) \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTION|35 Videos
  • INTEGRATION

    PUNEET DOGRA|Exercise Prev year questions|48 Videos
  • LIMIT

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |43 Videos

Similar Questions

Explore conceptually related problems

What are the values of (x, y) satisfying the simultaneous equation sin^(-1)x + sin^(-1)y=(2pi)/(3)and cos^(-1)x - cos^(-1)y=(pi)/(3) ?

If sin^(-1)x + sin^(-1)y =(2pi)/3 , then: cos^(-1)x +cos^(-1)y=

If sin^(-1)x +sin^(-1)y =pi then cos^(-1)x +cos^(-1)y is :

If sin^(-1)x+cos^(-1)y=(2pi)/(5),"then "cos^(-1)x+sin^(-1)y =

Solve the following equations/system of equations sin^(-1) x+sin^(-1)y=(2pi)/(3) & cos^(-1)x-cos^(-1)y=pi/3

If sin^(-1)x+sin^(-1)y=(2pi)/3 , then cos^(-1)x+cos^(-1)y is equal to

If sin^(-1) x + sin^(-1) y = (2pi)/3", then " cos^(-1) x + cos^(-1) y

PUNEET DOGRA-INVERSE TRIGONOMETRIC FUNCTION -PREV YEAR QUESTION
  1. What are the values of (x,y) satisfying the simultaneous equations sin...

    Text Solution

    |

  2. What is tan{2tan^(-1)""(1)/(3)}=

    Text Solution

    |

  3. If sin^(-1)((2a)/(1+a^(2)))-cos^(-1)((1-b^(2))/(1+b^2))=tan^(-1)((2x)/...

    Text Solution

    |

  4. What is the value of sin^(-1)""(4)/(5)+sec^(-1)""(5)/(4)-(pi)/(2)

    Text Solution

    |

  5. What is the value of sin^(-1)""(4)/(5)+sec^(-1)""(5)/(4)-(pi)/(2)

    Text Solution

    |

  6. Let the slope of the curve y=cos^(-1)(sinx) be tantheta then the value...

    Text Solution

    |

  7. prove tan^(-1)(3/5)+tan^(-1)(1/4)=(pi)/(4)

    Text Solution

    |

  8. sin^(-1) (sin=(2pi)/(3)) = ?

    Text Solution

    |

  9. The principle value of sin^(-1)x lies in the interval

    Text Solution

    |

  10. Find the value of sin^(-1) ((3)/(5)) + tan^(-1) ((1)/(7))

    Text Solution

    |

  11. What is the value of cos(2cos^(-1)(0.8)) ?

    Text Solution

    |

  12. Consider the following statements 1. There exists thetain(-(pi)/(2),...

    Text Solution

    |

  13. Simplify:- 8 * 9 * 12 ÷ 18 = ?

    Text Solution

    |

  14. Consider the following statements 1. sin^(-1)""(4)/(5)+sin^(-1)""(3)...

    Text Solution

    |

  15. The value of tan(2tan^(-1)""(1)/(5)-(pi)/(4)) is

    Text Solution

    |

  16. x=4tan^(-1)((1)/(5)),y=tan^(-1)((1)/(70)) z=tan^(-1)((1)/(99)) Wha...

    Text Solution

    |

  17. x=4tan^(-1)((1)/(5)),y=tan^(-1)((1)/(70)) z=tan^(-1)((1)/(99)) Wha...

    Text Solution

    |

  18. x=4tan^(-1)((1)/(5)),y=tan^(-1)((1)/(70)) z=tan^(-1)((1)/(99)) Wha...

    Text Solution

    |

  19. The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 ...

    Text Solution

    |

  20. What is sin^(-1)""(4)/(5)+sin^(-1)""(3)/(3) equal to ?

    Text Solution

    |

  21. What is sin^(-1)sin((3pi)/(5)) equal to?

    Text Solution

    |