Home
Class 14
MATHS
If sin^(-1)((2a)/(1+a^(2)))-cos^(-1)((1-...

If `sin^(-1)((2a)/(1+a^(2)))-cos^(-1)((1-b^(2))/(1+b^2))=tan^(-1)((2x)/(1-x^(2)))` then what is the value of x?

A

`a//b`

B

ab

C

`b//a`

D

`(a-b)/(1+ab)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \sin^{-1}\left(\frac{2a}{1+a^2}\right) - \cos^{-1}\left(\frac{1-b^2}{1+b^2}\right) = \tan^{-1}\left(\frac{2x}{1-x^2}\right), \] we will use some properties and formulas of inverse trigonometric functions. ### Step 1: Use the formula for sine and cosine inverses We know that: \[ \sin^{-1}(y) + \cos^{-1}(y) = \frac{\pi}{2}. \] Thus, we can rewrite \(\cos^{-1}\) in terms of \(\sin^{-1}\): \[ \cos^{-1}\left(\frac{1-b^2}{1+b^2}\right) = \frac{\pi}{2} - \sin^{-1}\left(\frac{1-b^2}{1+b^2}\right). \] ### Step 2: Substitute into the equation Substituting this into the original equation gives: \[ \sin^{-1}\left(\frac{2a}{1+a^2}\right) - \left(\frac{\pi}{2} - \sin^{-1}\left(\frac{1-b^2}{1+b^2}\right)\right) = \tan^{-1}\left(\frac{2x}{1-x^2}\right). \] This simplifies to: \[ \sin^{-1}\left(\frac{2a}{1+a^2}\right) + \sin^{-1}\left(\frac{1-b^2}{1+b^2}\right) - \frac{\pi}{2} = \tan^{-1}\left(\frac{2x}{1-x^2}\right). \] ### Step 3: Use the formula for tangent inverse Using the formula for the tangent of the sum of angles: \[ \tan^{-1}(u) + \tan^{-1}(v) = \tan^{-1\left(\frac{u+v}{1-uv}\right)}, \] we can express the left side in terms of tangent. ### Step 4: Apply the sine and cosine formulas Using the known identities: \[ \sin^{-1}(y) = 2 \tan^{-1}\left(\frac{y}{\sqrt{1-y^2}}\right), \] we can express the left-hand side in terms of tangent. ### Step 5: Set the equations equal After simplifying, we find: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}(x). \] ### Step 6: Use the tangent difference formula Using the tangent difference formula: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a-b}{1+ab}\right), \] we can equate: \[ \tan^{-1}\left(\frac{a-b}{1+ab}\right) = \tan^{-1}(x). \] ### Step 7: Solve for \(x\) This leads us to: \[ x = \frac{a-b}{1+ab}. \] Thus, the value of \(x\) is: \[ \boxed{\frac{a-b}{1+ab}}. \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTION|35 Videos
  • INTEGRATION

    PUNEET DOGRA|Exercise Prev year questions|48 Videos
  • LIMIT

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |43 Videos

Similar Questions

Explore conceptually related problems

If sin^(-1)((2a)/(1+a^(2)))-cos^(-1)((1-b^(2))/(1+b^(2)))=tan^(-1)((2x)/(1-x^(2))) , then what os the value of x ?

If sin^(-1) ((2a)/(1+a^(2)))-cos^(-1)((1-b^(2))/(1+b^(2))) = tan ^(-1) ((2x)/(1-x^(2))), then : x =

If |a|lt1| b|lt1and|x|lt1 then the solution of sin^(-1)((2a)/(1+a^(2)))-cos^(-1)((1-b^(2))/(1+b^(2)))=tan^(-1)((2x)/(1-x^(2))) is

If sin^(-1)((2a)/(1+a^(2)))+sin^(-1)((2b)/(1+b^(2)))=2tan^(-1)x

If sin^(-1)((2a)/(1+a^(2))) + cos^(-1)((1-a^(2))/(1+a^(2)))=tan^(-1)((2x)/(1-x^(2))) , where a, x in]0,1[ , then the value of x is

If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x then

If sin^(-1)(2x)/(1+x^(2))=tan^(-1)(2x)/(1-x^(2)), then find the value of x.

if cos^(-1)((1-a^(2))/(1+a^(2)))-cos^(-1)((1-b^(2))/(1+b^(2)))=2tan^(-1)x then x is:

PUNEET DOGRA-INVERSE TRIGONOMETRIC FUNCTION -PREV YEAR QUESTION
  1. If sin^(-1)((2a)/(1+a^(2)))-cos^(-1)((1-b^(2))/(1+b^2))=tan^(-1)((2x)/...

    Text Solution

    |

  2. What is tan{2tan^(-1)""(1)/(3)}=

    Text Solution

    |

  3. If sin^(-1)((2a)/(1+a^(2)))-cos^(-1)((1-b^(2))/(1+b^2))=tan^(-1)((2x)/...

    Text Solution

    |

  4. What is the value of sin^(-1)""(4)/(5)+sec^(-1)""(5)/(4)-(pi)/(2)

    Text Solution

    |

  5. What is the value of sin^(-1)""(4)/(5)+sec^(-1)""(5)/(4)-(pi)/(2)

    Text Solution

    |

  6. Let the slope of the curve y=cos^(-1)(sinx) be tantheta then the value...

    Text Solution

    |

  7. prove tan^(-1)(3/5)+tan^(-1)(1/4)=(pi)/(4)

    Text Solution

    |

  8. sin^(-1) (sin=(2pi)/(3)) = ?

    Text Solution

    |

  9. The principle value of sin^(-1)x lies in the interval

    Text Solution

    |

  10. Find the value of sin^(-1) ((3)/(5)) + tan^(-1) ((1)/(7))

    Text Solution

    |

  11. What is the value of cos(2cos^(-1)(0.8)) ?

    Text Solution

    |

  12. Consider the following statements 1. There exists thetain(-(pi)/(2),...

    Text Solution

    |

  13. Simplify:- 8 * 9 * 12 ÷ 18 = ?

    Text Solution

    |

  14. Consider the following statements 1. sin^(-1)""(4)/(5)+sin^(-1)""(3)...

    Text Solution

    |

  15. The value of tan(2tan^(-1)""(1)/(5)-(pi)/(4)) is

    Text Solution

    |

  16. x=4tan^(-1)((1)/(5)),y=tan^(-1)((1)/(70)) z=tan^(-1)((1)/(99)) Wha...

    Text Solution

    |

  17. x=4tan^(-1)((1)/(5)),y=tan^(-1)((1)/(70)) z=tan^(-1)((1)/(99)) Wha...

    Text Solution

    |

  18. x=4tan^(-1)((1)/(5)),y=tan^(-1)((1)/(70)) z=tan^(-1)((1)/(99)) Wha...

    Text Solution

    |

  19. The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 ...

    Text Solution

    |

  20. What is sin^(-1)""(4)/(5)+sin^(-1)""(3)/(3) equal to ?

    Text Solution

    |

  21. What is sin^(-1)sin((3pi)/(5)) equal to?

    Text Solution

    |