Home
Class 14
MATHS
If sin^(-1)""(5)/(x)+sin^(-1)""(12)/(x)=...

If `sin^(-1)""(5)/(x)+sin^(-1)""(12)/(x)=(pi)/(2)`, then what is the value x?

A

1

B

7

C

13

D

17

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1}\left(\frac{5}{x}\right) + \sin^{-1}\left(\frac{12}{x}\right) = \frac{\pi}{2} \), we can follow these steps: ### Step 1: Use the identity for inverse sine We know that: \[ \sin^{-1}(a) + \sin^{-1}(b) = \frac{\pi}{2} \implies a^2 + b^2 = 1 \] In our case, let \( a = \frac{5}{x} \) and \( b = \frac{12}{x} \). Therefore, we can write: \[ \left(\frac{5}{x}\right)^2 + \left(\frac{12}{x}\right)^2 = 1 \] ### Step 2: Square the terms Calculating the squares: \[ \frac{25}{x^2} + \frac{144}{x^2} = 1 \] ### Step 3: Combine the fractions Combine the fractions on the left side: \[ \frac{25 + 144}{x^2} = 1 \] This simplifies to: \[ \frac{169}{x^2} = 1 \] ### Step 4: Cross-multiply to solve for \( x^2 \) Cross-multiplying gives: \[ 169 = x^2 \] ### Step 5: Solve for \( x \) Taking the square root of both sides: \[ x = \pm 13 \] ### Step 6: Determine the valid solution Since \( x \) must be positive (as it is in the denominator of the sine functions), we take: \[ x = 13 \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{13} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTION|35 Videos
  • INTEGRATION

    PUNEET DOGRA|Exercise Prev year questions|48 Videos
  • LIMIT

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |43 Videos

Similar Questions

Explore conceptually related problems

Solve sin^(-1) (5/x) + sin^(-1)(12/x) = pi/2

If sin^(-1)((5)/(x))+sin^(-1)((12)/(x))=sin^(-1)((2)/(x))+cos^(-1)((2)/(x)) then the value of x is equal to

Knowledge Check

  • If "sin"^(-1)(5)/(x) +"sin"^(-1)(12)/(x)=(pi)/(2) , then what is the value of x?

    A
    1
    B
    7
    C
    13
    D
    17
  • If sin^(-1)x+cot^(-1)(1//2)=pi//2 , then what is the value of x?

    A
    0
    B
    `1//sqrt5`
    C
    `2//sqrt5`
    D
    `sqrt3//2`
  • If sin^(-1)x + cot^(-1)(1//2)=pi//2 , then what is the value of x ?

    A
    0
    B
    `1//sqrt(5)`
    C
    `2//sqrt(5)`
    D
    `sqrt(3)//2`
  • Similar Questions

    Explore conceptually related problems

    If (sin^(-1)x)^(2)+(cos^(-1)x)^(2)=(5 pi^(2))/(8) then one of the values of x is

    If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3 pi)/(2) ,then the value of x^(100)+y^(100)+z^(100)+(12)/(x^(101)+y^(101)+z^(101)) is equal to

    If sin^(-1)x+csc^(-1)x+tan^(-1)x=(5 pi)/(4) then the value

    If sin^(-1) ((x)/(5))+ cosec^(-1) ((5)/(4))=(pi)/(2) , then the value of x is

    If (sin^(-1)x)^2 + (cos^(-1)x)^2 =(5pi^2)/8 , then one of the values of x is