Home
Class 14
MATHS
Consider the following statements 1. s...

Consider the following statements
1. `sin^(-1)""(4)/(5)+sin^(-1)""(3)/(5)=(pi)/(2)`
2. `tan^(-1)sqrt3+tan^(-1)1=-tan^(-1)(2+sqrt3)`
Which of the above statements (s) is/are correct ?

A

Only 1

B

Only 2

C

Both 1 and 2

D

Neither 1 nor 2

Text Solution

AI Generated Solution

The correct Answer is:
To determine the correctness of the given statements, we will analyze each statement step by step. ### Statement 1: \[ \sin^{-1}\left(\frac{4}{5}\right) + \sin^{-1}\left(\frac{3}{5}\right) = \frac{\pi}{2} \] **Step 1: Use the formula for the sum of inverse sine functions.** The formula for the sum of two inverse sine functions is: \[ \sin^{-1}(x) + \sin^{-1}(y) = \sin^{-1}\left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right) \] where \( x = \frac{4}{5} \) and \( y = \frac{3}{5} \). **Step 2: Calculate \( \sqrt{1 - y^2} \) and \( \sqrt{1 - x^2} \).** \[ \sqrt{1 - y^2} = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5} \] \[ \sqrt{1 - x^2} = \sqrt{1 - \left(\frac{4}{5}\right)^2} = \sqrt{1 - \frac{16}{25}} = \sqrt{\frac{9}{25}} = \frac{3}{5} \] **Step 3: Substitute back into the formula.** Now substituting into the formula: \[ \sin^{-1}\left(\frac{4}{5}\right) + \sin^{-1}\left(\frac{3}{5}\right) = \sin^{-1}\left(\frac{4}{5} \cdot \frac{4}{5} + \frac{3}{5} \cdot \frac{3}{5}\right) = \sin^{-1}\left(\frac{16}{25} + \frac{9}{25}\right) = \sin^{-1}\left(\frac{25}{25}\right) = \sin^{-1}(1) \] **Step 4: Conclusion for Statement 1.** Since \(\sin^{-1}(1) = \frac{\pi}{2}\), the first statement is correct. ### Statement 2: \[ \tan^{-1}(\sqrt{3}) + \tan^{-1}(1) = -\tan^{-1}(2 + \sqrt{3}) \] **Step 1: Use the formula for the sum of inverse tangent functions.** The formula for the sum of two inverse tangent functions is: \[ \tan^{-1}(A) + \tan^{-1}(B) = \tan^{-1}\left(\frac{A + B}{1 - AB}\right) \] where \( A = \sqrt{3} \) and \( B = 1 \). **Step 2: Substitute \( A \) and \( B \) into the formula.** \[ \tan^{-1}(\sqrt{3}) + \tan^{-1}(1) = \tan^{-1}\left(\frac{\sqrt{3} + 1}{1 - \sqrt{3} \cdot 1}\right) = \tan^{-1}\left(\frac{\sqrt{3} + 1}{1 - \sqrt{3}}\right) \] **Step 3: Simplify the expression.** Rationalizing the denominator: \[ \frac{\sqrt{3} + 1}{1 - \sqrt{3}} \cdot \frac{1 + \sqrt{3}}{1 + \sqrt{3}} = \frac{(\sqrt{3} + 1)(1 + \sqrt{3})}{(1 - \sqrt{3})(1 + \sqrt{3})} = \frac{3 + \sqrt{3} + \sqrt{3} + 1}{1 - 3} = \frac{4 + 2\sqrt{3}}{-2} = -2 - \sqrt{3} \] **Step 4: Conclusion for Statement 2.** Thus, we have: \[ \tan^{-1}(\sqrt{3}) + \tan^{-1}(1) = \tan^{-1}(-2 - \sqrt{3}) = -\tan^{-1}(2 + \sqrt{3}) \] This shows that the second statement is also correct. ### Final Conclusion: Both statements are correct.
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTION|35 Videos
  • INTEGRATION

    PUNEET DOGRA|Exercise Prev year questions|48 Videos
  • LIMIT

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |43 Videos

Similar Questions

Explore conceptually related problems

Consider the following statements :1.sin^(-1)backslash(4)/(5)+sin^(-1)backslash(3)/(5)=(pi)/(2) and 2tan^(-1)sqrt(3)+tan^(-1)1=-tan^(-1)(2+sqrt(3)) Which of the above statement(s) is/are correct?

sin^(-1)((sqrt(3))/(2))-tan^(-1)(-sqrt(3))

sin^(-1) (-1/2) + tan^(-1) (sqrt3) =

Consider the following statement : 1. tan^(-1)1 + tan^(-1) (0.5) = pi//2 2. sin^(-1)(1//3) + cos^(-1)(1//3) = pi//2 Which of the above statement is/are correct ?

1. sin^(-1) (-1/2) = 2. tan^(-1) (-sqrt3) =

Consider the following statements I. tan^(-1)1+tan^(-1)(0.5)=pi//2 II. sin^(-1)(1//3)+Cos^(-1)(1//3)=(pi)/(2) Which of the above statement(s) is/are correct?

Consider the following statements I. cosec^(-1)(-(2)/(sqrt3))=-(pi)/(3) II. sec^(-1)((2)/(sqrt3))=(pi)/(6) Which of the above statement(s) is//are correct?

sin[cos^(-1)(-1/2)+tan^(-1)(sqrt(3))]

PUNEET DOGRA-INVERSE TRIGONOMETRIC FUNCTION -PREV YEAR QUESTION
  1. Consider the following statements 1. There exists thetain(-(pi)/(2),...

    Text Solution

    |

  2. Simplify:- 8 * 9 * 12 ÷ 18 = ?

    Text Solution

    |

  3. Consider the following statements 1. sin^(-1)""(4)/(5)+sin^(-1)""(3)...

    Text Solution

    |

  4. The value of tan(2tan^(-1)""(1)/(5)-(pi)/(4)) is

    Text Solution

    |

  5. x=4tan^(-1)((1)/(5)),y=tan^(-1)((1)/(70)) z=tan^(-1)((1)/(99)) Wha...

    Text Solution

    |

  6. x=4tan^(-1)((1)/(5)),y=tan^(-1)((1)/(70)) z=tan^(-1)((1)/(99)) Wha...

    Text Solution

    |

  7. x=4tan^(-1)((1)/(5)),y=tan^(-1)((1)/(70)) z=tan^(-1)((1)/(99)) Wha...

    Text Solution

    |

  8. The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 ...

    Text Solution

    |

  9. What is sin^(-1)""(4)/(5)+sin^(-1)""(3)/(3) equal to ?

    Text Solution

    |

  10. What is sin^(-1)sin((3pi)/(5)) equal to?

    Text Solution

    |

  11. Consider the following statements I. tan^(-1)1+tan^(-1)(0.5)=pi//2 ...

    Text Solution

    |

  12. If x and y are positive and xygt1, then what is tan^(-1)x+tan^(-1)y to...

    Text Solution

    |

  13. What is tan^(-1)((1)/(2))+tan^(-1)((1)/(3)) equal to?

    Text Solution

    |

  14. sin^(-1)((2a)/(1+a^(2)))+sin^(-1)((2b)/(1+b^(2)))=2tan^(-1)x, then x i...

    Text Solution

    |

  15. What is the value of sin^(-1)""(4)/(5)+sec^(-1)""(5)/(4)-(pi)/(2)

    Text Solution

    |

  16. What is the value of sec^(2)tan^(-1)((5)/(11))?

    Text Solution

    |

  17. IF tan^-1 2, tan^-1 3 are two angles of a triangle , then the third an...

    Text Solution

    |

  18. What is the value of cos{cos^(-1)""(4)/(5)+cos^(-1)""(12)/(13)}

    Text Solution

    |

  19. What is the principle value of sec^(-1)((2)/(sqrt3))

    Text Solution

    |

  20. Consider the following statements I. cosec^(-1)(-(2)/(sqrt3))=-(pi)/...

    Text Solution

    |