Home
Class 14
MATHS
x=4tan^(-1)((1)/(5)),y=tan^(-1)((1)/(70)...

`x=4tan^(-1)((1)/(5)),y=tan^(-1)((1)/(70))`
`z=tan^(-1)((1)/(99))`
What is x equal to?

A

`tan^(-1)((60)/(119))`

B

`tan^(-1)((120)/(119))`

C

`tan^(-1)((90)/(169))`

D

`tan^(-1)((170)/(169))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve for \( x = 4 \tan^{-1} \left( \frac{1}{5} \right) \), we can use the double angle formula for the tangent inverse function. The formula states: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1} \left( \frac{a + b}{1 - ab} \right) \quad \text{if } ab < 1 \] ### Step 1: Find \( 2 \tan^{-1} \left( \frac{1}{5} \right) \) Using the double angle formula: \[ 2 \tan^{-1}(x) = \tan^{-1} \left( \frac{2x}{1 - x^2} \right) \] Let \( x = \frac{1}{5} \): \[ 2 \tan^{-1} \left( \frac{1}{5} \right) = \tan^{-1} \left( \frac{2 \cdot \frac{1}{5}}{1 - \left( \frac{1}{5} \right)^2} \right) \] Calculating the numerator: \[ 2 \cdot \frac{1}{5} = \frac{2}{5} \] Calculating the denominator: \[ 1 - \left( \frac{1}{5} \right)^2 = 1 - \frac{1}{25} = \frac{25 - 1}{25} = \frac{24}{25} \] So we have: \[ 2 \tan^{-1} \left( \frac{1}{5} \right) = \tan^{-1} \left( \frac{\frac{2}{5}}{\frac{24}{25}} \right) = \tan^{-1} \left( \frac{2 \cdot 25}{5 \cdot 24} \right) = \tan^{-1} \left( \frac{10}{24} \right) = \tan^{-1} \left( \frac{5}{12} \right) \] ### Step 2: Find \( 4 \tan^{-1} \left( \frac{1}{5} \right) \) Now we can apply the double angle formula again to find \( 4 \tan^{-1} \left( \frac{1}{5} \right) \): \[ 4 \tan^{-1}(x) = 2 \tan^{-1}(2x/(1-x^2)) \] Letting \( x = \frac{5}{12} \): \[ 4 \tan^{-1} \left( \frac{1}{5} \right) = 2 \tan^{-1} \left( \frac{2 \cdot \frac{5}{12}}{1 - \left( \frac{5}{12} \right)^2} \right) \] Calculating the numerator: \[ 2 \cdot \frac{5}{12} = \frac{10}{12} = \frac{5}{6} \] Calculating the denominator: \[ 1 - \left( \frac{5}{12} \right)^2 = 1 - \frac{25}{144} = \frac{144 - 25}{144} = \frac{119}{144} \] So we have: \[ 4 \tan^{-1} \left( \frac{1}{5} \right) = 2 \tan^{-1} \left( \frac{\frac{5}{6}}{\frac{119}{144}} \right) = 2 \tan^{-1} \left( \frac{5 \cdot 144}{6 \cdot 119} \right) = 2 \tan^{-1} \left( \frac{120}{119} \right) \] ### Step 3: Final Calculation Now we apply the double angle formula one more time: \[ 2 \tan^{-1}(x) = \tan^{-1} \left( \frac{2x}{1 - x^2} \right) \] Let \( x = \frac{120}{119} \): \[ \tan^{-1} \left( \frac{2 \cdot \frac{120}{119}}{1 - \left( \frac{120}{119} \right)^2} \right) \] Calculating the numerator: \[ 2 \cdot \frac{120}{119} = \frac{240}{119} \] Calculating the denominator: \[ 1 - \left( \frac{120}{119} \right)^2 = 1 - \frac{14400}{14161} = \frac{14161 - 14400}{14161} = \frac{-239}{14161} \] So we have: \[ x = \tan^{-1} \left( \frac{\frac{240}{119}}{\frac{-239}{14161}} \right) = \tan^{-1} \left( \frac{240 \cdot 14161}{-239 \cdot 119} \right) \] Thus, the value of \( x \) is: \[ x = \tan^{-1} \left( \frac{120}{119} \right) \] ### Final Answer \[ x = \tan^{-1} \left( \frac{120}{119} \right) \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTION|35 Videos
  • INTEGRATION

    PUNEET DOGRA|Exercise Prev year questions|48 Videos
  • LIMIT

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |43 Videos

Similar Questions

Explore conceptually related problems

Conisder x = 4 tan^(-1)((1)/(5)),y = tan^(-1)((1)/(70))and z = tan^(-1)((1)/(99)) . What is x equal to ?

Conisder x = 4 tan^(-1)((1)/(5)),y = tan^(-1)((1)/(70))and z = tan^(-1)((1)/(99)) . What is x - y equal to ?

Conisder x = 4 tan^(-1)((1)/(5)),y = tan^(-1)((1)/(70))and z = tan^(-1)((1)/(99)) . What is x - y + z equal to ?

4tan^(-1)((1)/(5))=tan^(-1)((1)/(70))+tan^(-1)((1)/(99))+(pi )/(4)

4tan^(-1)((1)/(5))-tan^(-1)((1)/(70))+tan^(-1)((1)/(99))=pi/4

Find the value of 4tan^(-1)(1)/(5)-tan^(-1)(1)/(70)+tan^(-1)(1)/(99)

tan^(-1)((2x-1)/(10))+tan^(-1 )(1/(2x))=(pi)/(4) , then x is equal to

tan^(-1)(x-1)+tan^(-1)(x+1)=(pi)/(4)

Find the value of 4 tan^(-1).(1)/(5) - tan^(-1).(1)/(70) + tan^(-1).(1)/(99)

PUNEET DOGRA-INVERSE TRIGONOMETRIC FUNCTION -PREV YEAR QUESTION
  1. Consider the following statements 1. sin^(-1)""(4)/(5)+sin^(-1)""(3)...

    Text Solution

    |

  2. The value of tan(2tan^(-1)""(1)/(5)-(pi)/(4)) is

    Text Solution

    |

  3. x=4tan^(-1)((1)/(5)),y=tan^(-1)((1)/(70)) z=tan^(-1)((1)/(99)) Wha...

    Text Solution

    |

  4. x=4tan^(-1)((1)/(5)),y=tan^(-1)((1)/(70)) z=tan^(-1)((1)/(99)) Wha...

    Text Solution

    |

  5. x=4tan^(-1)((1)/(5)),y=tan^(-1)((1)/(70)) z=tan^(-1)((1)/(99)) Wha...

    Text Solution

    |

  6. The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 ...

    Text Solution

    |

  7. What is sin^(-1)""(4)/(5)+sin^(-1)""(3)/(3) equal to ?

    Text Solution

    |

  8. What is sin^(-1)sin((3pi)/(5)) equal to?

    Text Solution

    |

  9. Consider the following statements I. tan^(-1)1+tan^(-1)(0.5)=pi//2 ...

    Text Solution

    |

  10. If x and y are positive and xygt1, then what is tan^(-1)x+tan^(-1)y to...

    Text Solution

    |

  11. What is tan^(-1)((1)/(2))+tan^(-1)((1)/(3)) equal to?

    Text Solution

    |

  12. sin^(-1)((2a)/(1+a^(2)))+sin^(-1)((2b)/(1+b^(2)))=2tan^(-1)x, then x i...

    Text Solution

    |

  13. What is the value of sin^(-1)""(4)/(5)+sec^(-1)""(5)/(4)-(pi)/(2)

    Text Solution

    |

  14. What is the value of sec^(2)tan^(-1)((5)/(11))?

    Text Solution

    |

  15. IF tan^-1 2, tan^-1 3 are two angles of a triangle , then the third an...

    Text Solution

    |

  16. What is the value of cos{cos^(-1)""(4)/(5)+cos^(-1)""(12)/(13)}

    Text Solution

    |

  17. What is the principle value of sec^(-1)((2)/(sqrt3))

    Text Solution

    |

  18. Consider the following statements I. cosec^(-1)(-(2)/(sqrt3))=-(pi)/...

    Text Solution

    |

  19. If sin (sin^(-1).(1)/(5) + cos^(-1) x) = 1, then find the value of x

    Text Solution

    |

  20. What is the value of sin^(-1)""(4)/(5)+2tan^(-1)""(1)/(3)?

    Text Solution

    |