Home
Class 14
MATHS
What is the value of sin^(-1)""(4)/(5)+2...

What is the value of `sin^(-1)""(4)/(5)+2tan^(-1)""(1)/(3)`?

A

`(pi)/(3)`

B

`(pi)/(2)`

C

`(pi)/(4)`

D

`(pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin^{-1}\left(\frac{4}{5}\right) + 2\tan^{-1}\left(\frac{1}{3}\right) \), we can follow these steps: ### Step 1: Write the expression We start with the expression: \[ \sin^{-1}\left(\frac{4}{5}\right) + 2\tan^{-1}\left(\frac{1}{3}\right) \] ### Step 2: Use the formula for \( 2\tan^{-1}(x) \) We know that: \[ 2\tan^{-1}(x) = \tan^{-1}\left(\frac{2x}{1 - x^2}\right) \] In our case, let \( x = \frac{1}{3} \). Plugging this into the formula gives: \[ 2\tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1}\left(\frac{2 \cdot \frac{1}{3}}{1 - \left(\frac{1}{3}\right)^2}\right) \] ### Step 3: Calculate the numerator and denominator Calculating the numerator: \[ 2 \cdot \frac{1}{3} = \frac{2}{3} \] Calculating the denominator: \[ 1 - \left(\frac{1}{3}\right)^2 = 1 - \frac{1}{9} = \frac{8}{9} \] Thus, we have: \[ 2\tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1}\left(\frac{\frac{2}{3}}{\frac{8}{9}}\right) = \tan^{-1}\left(\frac{2 \cdot 9}{3 \cdot 8}\right) = \tan^{-1}\left(\frac{6}{8}\right) = \tan^{-1}\left(\frac{3}{4}\right) \] ### Step 4: Substitute back into the expression Now substituting back, we have: \[ \sin^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{3}{4}\right) \] ### Step 5: Use the identity for \( \sin^{-1}(x) + \tan^{-1}(y) \) We can use the identity: \[ \tan^{-1}(y) = \cos^{-1}\left(\frac{1}{\sqrt{1+y^2}}\right) \] Thus, \[ \tan^{-1}\left(\frac{3}{4}\right) = \cos^{-1}\left(\frac{1}{\sqrt{1+\left(\frac{3}{4}\right)^2}}\right) \] ### Step 6: Calculate \( \cos^{-1} \) Calculating \( 1 + \left(\frac{3}{4}\right)^2 \): \[ 1 + \frac{9}{16} = \frac{16}{16} + \frac{9}{16} = \frac{25}{16} \] So, \[ \sqrt{1 + \left(\frac{3}{4}\right)^2} = \sqrt{\frac{25}{16}} = \frac{5}{4} \] Thus, \[ \tan^{-1}\left(\frac{3}{4}\right) = \cos^{-1}\left(\frac{4}{5}\right) \] ### Step 7: Combine the results Now we have: \[ \sin^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{4}{5}\right) \] Using the identity: \[ \sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2} \] So, \[ \sin^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{4}{5}\right) = \frac{\pi}{2} \] ### Final Answer Thus, the value of \( \sin^{-1}\left(\frac{4}{5}\right) + 2\tan^{-1}\left(\frac{1}{3}\right) \) is: \[ \frac{\pi}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTION|35 Videos
  • INTEGRATION

    PUNEET DOGRA|Exercise Prev year questions|48 Videos
  • LIMIT

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |43 Videos

Similar Questions

Explore conceptually related problems

What is the value of "sin"^(-1)(4)/(5) + 2 "tan"^(-1)(1)/(3) ?

Find the value of sin^(-1) ((3)/(5)) + tan^(-1) ((1)/(7))

The value of tan[sin^(-1) (3/5)+tan^(-1) (2/3)] is

"sin"^(-1)(4)/(5)+2"tan"^(-1)(1)/(3) is equal to

Find the value of tan(sin^(-1)((3)/(5))+cot^(-1)((3)/(2)))

What is the value of sin^(2)theta+(1)/(1+tan^(2)theta)?

The value of tan(2tan^(-1)(1/5))

The value of sin^(-1)((3)/(5))+tan^(-1)((1)/(7)) is equal to

PUNEET DOGRA-INVERSE TRIGONOMETRIC FUNCTION -PREV YEAR QUESTION
  1. x=4tan^(-1)((1)/(5)),y=tan^(-1)((1)/(70)) z=tan^(-1)((1)/(99)) Wha...

    Text Solution

    |

  2. x=4tan^(-1)((1)/(5)),y=tan^(-1)((1)/(70)) z=tan^(-1)((1)/(99)) Wha...

    Text Solution

    |

  3. The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 ...

    Text Solution

    |

  4. What is sin^(-1)""(4)/(5)+sin^(-1)""(3)/(3) equal to ?

    Text Solution

    |

  5. What is sin^(-1)sin((3pi)/(5)) equal to?

    Text Solution

    |

  6. Consider the following statements I. tan^(-1)1+tan^(-1)(0.5)=pi//2 ...

    Text Solution

    |

  7. If x and y are positive and xygt1, then what is tan^(-1)x+tan^(-1)y to...

    Text Solution

    |

  8. What is tan^(-1)((1)/(2))+tan^(-1)((1)/(3)) equal to?

    Text Solution

    |

  9. sin^(-1)((2a)/(1+a^(2)))+sin^(-1)((2b)/(1+b^(2)))=2tan^(-1)x, then x i...

    Text Solution

    |

  10. What is the value of sin^(-1)""(4)/(5)+sec^(-1)""(5)/(4)-(pi)/(2)

    Text Solution

    |

  11. What is the value of sec^(2)tan^(-1)((5)/(11))?

    Text Solution

    |

  12. IF tan^-1 2, tan^-1 3 are two angles of a triangle , then the third an...

    Text Solution

    |

  13. What is the value of cos{cos^(-1)""(4)/(5)+cos^(-1)""(12)/(13)}

    Text Solution

    |

  14. What is the principle value of sec^(-1)((2)/(sqrt3))

    Text Solution

    |

  15. Consider the following statements I. cosec^(-1)(-(2)/(sqrt3))=-(pi)/...

    Text Solution

    |

  16. If sin (sin^(-1).(1)/(5) + cos^(-1) x) = 1, then find the value of x

    Text Solution

    |

  17. What is the value of sin^(-1)""(4)/(5)+2tan^(-1)""(1)/(3)?

    Text Solution

    |

  18. What is the prinicple value of cosec^(-1)(-sqrt2) ?

    Text Solution

    |

  19. If sin^(-1)""(5)/(x)+sin^(-1)""(12)/(x)=(pi)/(2), then what is the val...

    Text Solution

    |

  20. Statement I. If -1lexlt0 then cos(sin^(-1)x)=-sqrt(1-x^(2)) Statemen...

    Text Solution

    |