Home
Class 14
MATHS
If int(dx)/(f(x))=log{f(x)}^(2)+c, then ...

If `int(dx)/(f(x))=log{f(x)}^(2)+c`, then what is f(x) equal to ?

A

`2x+alpha`

B

`x+alpha`

C

`(x)/(2)+alpha`

D

`x^(2)+alpha`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given in the question, we start with the expression: \[ \int \frac{dx}{f(x)} = \log(f(x)^2) + c \] ### Step-by-Step Solution: 1. **Differentiate Both Sides**: To find \( f(x) \), we can differentiate both sides with respect to \( x \). \[ \frac{d}{dx} \left( \int \frac{dx}{f(x)} \right) = \frac{d}{dx} \left( \log(f(x)^2) + c \right) \] By the Fundamental Theorem of Calculus, the left-hand side becomes \( \frac{1}{f(x)} \). The right-hand side can be differentiated using the chain rule: \[ \frac{d}{dx} \left( \log(f(x)^2) \right) = \frac{2f'(x)}{f(x)} \] Thus, we have: \[ \frac{1}{f(x)} = \frac{2f'(x)}{f(x)} \] 2. **Simplify the Equation**: We can multiply both sides by \( f(x) \) (assuming \( f(x) \neq 0 \)): \[ 1 = 2f'(x) \] 3. **Solve for \( f'(x) \)**: Rearranging gives us: \[ f'(x) = \frac{1}{2} \] 4. **Integrate to Find \( f(x) \)**: Now, we integrate \( f'(x) \): \[ f(x) = \frac{1}{2}x + C \] where \( C \) is a constant of integration. 5. **Conclusion**: Therefore, the function \( f(x) \) is: \[ f(x) = \frac{x}{2} + C \] ### Final Answer: \[ f(x) = \frac{x}{2} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    PUNEET DOGRA|Exercise Prev year questions|48 Videos
  • HEIGHT & DISTANCE

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTION|35 Videos

Similar Questions

Explore conceptually related problems

int(f'(x))/(f(x)log{f(x)})dx=

If f(x)=log|x|,xne0 , then what is f(x) equal to ?

If int(1)/(f(x))dx=log[f(x)]^(2)+c , then f(x)=

int(f'(x))/(f(x))dx=log f(x)+c

If int(dx)/(xf(x))=f(f(x))+c, then f(x) is equal to

If intf(x)/(logcosx)dx=-log(logcosx)+c , then f(x) is equal to

int3^x(f(x)log3+f'(x))dx=

PUNEET DOGRA-INTEGRATION-Prev year questions
  1. If int(dx)/(f(x))=log{f(x)}^(2)+c, then what is f(x) equal to ?

    Text Solution

    |

  2. What is int(dx)/(2x^(2)-2x+1) equal to ?

    Text Solution

    |

  3. What is int(dx)/(x(1+lnx)^(n)) equal to ? (n ne 1)

    Text Solution

    |

  4. What is int ln(x)^(2) dx equal to?

    Text Solution

    |

  5. What is inte^(xln(a))dx equal to ?

    Text Solution

    |

  6. What is int(dx)/(a^(2)sin^(2)x+b^(2)cos^(2)x) equal to ?

    Text Solution

    |

  7. What is inte^(ln(tanx)) dx equal to ? Where e is the constant of integ...

    Text Solution

    |

  8. What is intsin^(3)xcosxdx equal to ?

    Text Solution

    |

  9. What is int(dx)/(2^(x)-1) equal to ?

    Text Solution

    |

  10. Consider the following statements : 1. (dy)/(dx) at a point on the c...

    Text Solution

    |

  11. What is inttan^(-1)(secx+tanx) dx equal to ?

    Text Solution

    |

  12. int(lnx)^(-1)dx-int(lnx)^(-2) dx is equal to

    Text Solution

    |

  13. l(1)=(d)/(dx)(e^(tanx)) l(2)=lim(h to 0)(e^(sin(x+h)-e^(sinx)))/(h) ...

    Text Solution

    |

  14. What is int((x^(e-1)+e^(x-1)))/(x^(e )+e^(x)) equal to ?

    Text Solution

    |

  15. Let f(x) be an indefinite integral of sin^(2)x. Consider the following...

    Text Solution

    |

  16. What is int(dx)/(x(x^(2)+1)) equal to ?

    Text Solution

    |

  17. What is int(x^(4)-1)/(x^(2)sqrt(x^(4)+x^(2)+1))dx equal to ?

    Text Solution

    |

  18. What is inte^(sinx)(xcos^(3)x-sinx)/(cos^(2)x)dx equal to ?

    Text Solution

    |

  19. Let f(x)and g(x) be twice differentiable functions on [0,2] satisfying...

    Text Solution

    |

  20. int(dx)/(1+e^(-x)) is equal to : Where c is the constant of integrat...

    Text Solution

    |

  21. Consider f'(x)=(x^(2))/(2)-kx+1 such that f(0)=0 and f(3)=15. The va...

    Text Solution

    |