Home
Class 14
MATHS
l(1)=(d)/(dx)(e^(tanx)) l(2)=lim(h to ...

`l_(1)=(d)/(dx)(e^(tanx))`
`l_(2)=lim_(h to 0)(e^(sin(x+h)-e^(sinx)))/(h)`
`l_(3)=inte^(sinx)cosxdx`, then which one of the following is correct ?

A

`l_(1) ne l_(2)`

B

`(d)/(dx)(l_(3))=l_(2)`

C

`intl_(3)dx=l_(2)`

D

`l_(2)=l_(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the three expressions \( l_1 \), \( l_2 \), and \( l_3 \) given in the question. ### Step 1: Evaluate \( l_1 \) Given: \[ l_1 = \frac{d}{dx}(e^{\tan x}) \] Using the chain rule for differentiation: \[ \frac{d}{dx}(e^{u}) = e^{u} \cdot \frac{du}{dx} \] where \( u = \tan x \). Now, we find \( \frac{du}{dx} \): \[ \frac{du}{dx} = \sec^2 x \] Thus, \[ l_1 = e^{\tan x} \cdot \sec^2 x \] ### Step 2: Evaluate \( l_2 \) Given: \[ l_2 = \lim_{h \to 0} \frac{e^{\sin(x+h)} - e^{\sin x}}{h} \] This limit represents the derivative of \( e^{\sin x} \) using the definition of the derivative: \[ l_2 = \frac{d}{dx}(e^{\sin x}) \] Using the chain rule again: \[ \frac{d}{dx}(e^{\sin x}) = e^{\sin x} \cdot \cos x \] Thus, \[ l_2 = e^{\sin x} \cdot \cos x \] ### Step 3: Evaluate \( l_3 \) Given: \[ l_3 = \int e^{\sin x} \cos x \, dx \] The integral of \( e^{\sin x} \cos x \) can be solved using substitution. Let: \[ u = \sin x \] Then, \[ du = \cos x \, dx \] Substituting into the integral gives: \[ l_3 = \int e^{u} \, du = e^{u} + C = e^{\sin x} + C \] ### Conclusion Now we summarize the results: - \( l_1 = e^{\tan x} \cdot \sec^2 x \) - \( l_2 = e^{\sin x} \cdot \cos x \) - \( l_3 = e^{\sin x} + C \) From the analysis, we can see that: - The derivative of \( l_3 \) gives us \( l_2 \), which means \( l_2 \) is indeed the derivative of \( l_3 \). Thus, the correct statement is that \( l_2 \) is the derivative of \( l_3 \). ### Final Answer The correct option is: **Option 2**.
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    PUNEET DOGRA|Exercise Prev year questions|48 Videos
  • HEIGHT & DISTANCE

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTION|35 Videos

Similar Questions

Explore conceptually related problems

If l_(1)=(d)/(dx)(e^(sinx)) l_(2)lim_(hto0) (e^(sin(x+h))-e^(sinx))/(h) l_(3)=inte^(sinx)cosxdx then which one of the following is correct?

If u=(d)/(dx)(e^(sinx)),v=lim_(hrarr0) (e^(sin(x+h))-e^(sinx))/(h) and w=inte^(sinx)cosxdx, then

lim_(h rarr0)(sin(x+h)-sinx)/(h)

d/(dx)(e^sqrt(1-x^2).tanx)=

Let (d)/(dx)(F(x))=(e^(sin x))/(x),x>0. If int_(1)^(4)2(e^(sin(x^(2))))/(x)dx=F(k)-F(1), then possible value of k is:

If L=lim_(x rarr0)(e^(-((x^(2))/(2)))-cos x)/(x^(3)sin x), then the value of (1)/(3L) is

If L=lim_(xto0) (e^(-x^(2)//2)-cosx)/(x^(3)sinx) , then the value of 1//(3L) is ________.

PUNEET DOGRA-INTEGRATION-Prev year questions
  1. What is inttan^(-1)(secx+tanx) dx equal to ?

    Text Solution

    |

  2. int(lnx)^(-1)dx-int(lnx)^(-2) dx is equal to

    Text Solution

    |

  3. l(1)=(d)/(dx)(e^(tanx)) l(2)=lim(h to 0)(e^(sin(x+h)-e^(sinx)))/(h) ...

    Text Solution

    |

  4. What is int((x^(e-1)+e^(x-1)))/(x^(e )+e^(x)) equal to ?

    Text Solution

    |

  5. Let f(x) be an indefinite integral of sin^(2)x. Consider the following...

    Text Solution

    |

  6. What is int(dx)/(x(x^(2)+1)) equal to ?

    Text Solution

    |

  7. What is int(x^(4)-1)/(x^(2)sqrt(x^(4)+x^(2)+1))dx equal to ?

    Text Solution

    |

  8. What is inte^(sinx)(xcos^(3)x-sinx)/(cos^(2)x)dx equal to ?

    Text Solution

    |

  9. Let f(x)and g(x) be twice differentiable functions on [0,2] satisfying...

    Text Solution

    |

  10. int(dx)/(1+e^(-x)) is equal to : Where c is the constant of integrat...

    Text Solution

    |

  11. Consider f'(x)=(x^(2))/(2)-kx+1 such that f(0)=0 and f(3)=15. The va...

    Text Solution

    |

  12. Consider f'(x)=(x^(2))/(2)-kx+1 such that f(0)=0 and f(3)=15. f''(-(...

    Text Solution

    |

  13. What is int(dx)/(sqrt(x^(2)+a^(2))) equal to

    Text Solution

    |

  14. The integral int (dx)/(acosx+bsinx) is of the form (1)/(r )ln[tan((x+a...

    Text Solution

    |

  15. The integral int (dx)/(acosx+bsinx) is of the form (1)/(r )ln[tan((x+a...

    Text Solution

    |

  16. What is int(xe^(x)dx)/((x+1)^(2)) equal to ? Where. C is the constan...

    Text Solution

    |

  17. Consider the function f''(x)=sec^(4)x+4 with f(0)=0 and f'(0)=0 What...

    Text Solution

    |

  18. Consider the function f''(x)=sec^(4)x+4 with f(0)=0 and f'(0)=0 What...

    Text Solution

    |

  19. Consider intxtan^(-1)xdx=A(x^(2)+1)tan^(-1)x+Bx+C where , C is the con...

    Text Solution

    |

  20. Consider intxtan^(-1)xdx=A(x^(2)+1)tan^(-1)x+Bx+C where , C is the con...

    Text Solution

    |