Home
Class 14
MATHS
Consider intxtan^(-1)xdx=A(x^(2)+1)tan^(...

Consider `intxtan^(-1)xdx=A(x^(2)+1)tan^(-1)x+Bx+C` where , C is the constant of integration.
What is the value of A ?

A

`1`

B

`(1)/(2)`

C

`-(1)/(2)`

D

`(1)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x \tan^{-1}(x) \, dx \) and express it in the form \( A(x^2 + 1) \tan^{-1}(x) + Bx + C \), we will use integration by parts. ### Step-by-Step Solution: 1. **Identify the parts for integration by parts**: - Let \( u = \tan^{-1}(x) \) and \( dv = x \, dx \). - Then, \( du = \frac{1}{1+x^2} \, dx \) and \( v = \frac{x^2}{2} \). 2. **Apply integration by parts**: \[ \int x \tan^{-1}(x) \, dx = u v - \int v \, du \] Substituting the values we have: \[ = \tan^{-1}(x) \cdot \frac{x^2}{2} - \int \frac{x^2}{2} \cdot \frac{1}{1+x^2} \, dx \] 3. **Simplify the integral**: \[ = \frac{x^2}{2} \tan^{-1}(x) - \frac{1}{2} \int \frac{x^2}{1+x^2} \, dx \] The integral \( \int \frac{x^2}{1+x^2} \, dx \) can be simplified: \[ \frac{x^2}{1+x^2} = 1 - \frac{1}{1+x^2} \] Therefore, \[ \int \frac{x^2}{1+x^2} \, dx = \int 1 \, dx - \int \frac{1}{1+x^2} \, dx = x - \tan^{-1}(x) \] 4. **Substitute back**: \[ = \frac{x^2}{2} \tan^{-1}(x) - \frac{1}{2} \left( x - \tan^{-1}(x) \right) \] \[ = \frac{x^2}{2} \tan^{-1}(x) - \frac{x}{2} + \frac{1}{2} \tan^{-1}(x) \] 5. **Combine terms**: \[ = \left( \frac{x^2}{2} + \frac{1}{2} \right) \tan^{-1}(x) - \frac{x}{2} + C \] \[ = \frac{(x^2 + 1)}{2} \tan^{-1}(x) - \frac{x}{2} + C \] 6. **Compare with the given form**: The expression we derived is: \[ \frac{(x^2 + 1)}{2} \tan^{-1}(x) - \frac{x}{2} + C \] This matches the form \( A(x^2 + 1) \tan^{-1}(x) + Bx + C \) where: - \( A = \frac{1}{2} \) - \( B = -\frac{1}{2} \) ### Conclusion: The value of \( A \) is \( \frac{1}{2} \).
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    PUNEET DOGRA|Exercise Prev year questions|48 Videos
  • HEIGHT & DISTANCE

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTION|35 Videos

Similar Questions

Explore conceptually related problems

Consider intxtan^(-1)xdx=A(x^(2)+1)tan^(-1)x+Bx+C where , C is the constant of integration. What is the value of B ?

Consider int x tan^(-1) x dx = A (x^(2) + 1) tan^(-1) x + Bx + C , where C is the constant of integration What is the value of A ?

Consider int x tan^(-1) x dx = A (x^(2) + 1) tan^(-1) x + Bx + C , where C is the constant of integration What is the value of B ?

What is int(xe^(x)dx)/((x+1)^(2)) equal to ? Where. C is the constant of integration.

Evaluate intxtan^-1xdx

If the integral I= ∫e^(5ln x)(x^(6)+1)^(-1)dx=ln (x^(6)+1)+C , (where C is the constant of integration) then the value of (1)/(lambda) is

int(dx)/(1+e^(-x)) is equal to : Where c is the constant of integration.

If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c , where c is the constant of integration and f(1)=0 , then the value of f(2) is equal to

If int x^(26).(x-1)^(17).(5x-3)dx=(x^(27).(x-1)^(18))/(k)+C where C is a constant of integration, then the value of k is equal to