Home
Class 14
MATHS
What is int(dx)/(sqrt(4+x^(2))) equal to...

What is `int(dx)/(sqrt(4+x^(2)))` equal to ?

A

`log|sqrt(4+x^(2))+x|+C`

B

`log|sqrt(4+x^(2))-x|+C`

C

`sin^(-1)((x)/(2))+C`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{dx}{\sqrt{4+x^2}} \), we can use a known formula for the integral of the form \( \int \frac{dx}{\sqrt{a^2 + x^2}} \). ### Step-by-step Solution: 1. **Identify the form**: We recognize that our integral is of the form \( \int \frac{dx}{\sqrt{a^2 + x^2}} \) where \( a^2 = 4 \). Thus, \( a = 2 \). 2. **Apply the formula**: The formula for this integral is: \[ \int \frac{dx}{\sqrt{a^2 + x^2}} = \ln |x + \sqrt{x^2 + a^2}| + C \] Substituting \( a = 2 \) into the formula gives: \[ \int \frac{dx}{\sqrt{4 + x^2}} = \ln |x + \sqrt{x^2 + 4}| + C \] 3. **Final result**: Therefore, the integral \( \int \frac{dx}{\sqrt{4+x^2}} \) is equal to: \[ \ln |x + \sqrt{x^2 + 4}| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    PUNEET DOGRA|Exercise Prev year questions|48 Videos
  • HEIGHT & DISTANCE

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTION|35 Videos

Similar Questions

Explore conceptually related problems

What is int(dx)/(sqrt(x^(2)+a^(2))) equal to

int(dx)/(sqrt(x-x^(2))) is equal to

int(dx)/(sqrt(x-x^(2))) equal is :

int(dx)/(x sqrt(x^(2)+4))

int(dx)/(x sqrt(x^(2)-4))

int(dx)/(sqrt(2ax-x^(2))) is equal to

int(dx)/(sqrt(5x-6-x^(2))) equals

int(dx)/(sqrt(3-5x-x^(2))) equals

int(x^2dx)/(sqrt(x^(3)-2)) equals to

What is int (dx)/(sqrt(x^(2) + a^(2))) equal to ?