Home
Class 14
MATHS
What is the value of inta^(x)e^(x)dx ?...

What is the value of `inta^(x)e^(x)dx` ?

A

`(a^(x)e^(x))/(lna)+C`

B

`a^(x)e^(x)+C`

C

`(a^(x)e^(x))/(ln(ae))+C`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int a^x e^x \, dx \), we will use the method of integration by parts. Here’s a step-by-step solution: ### Step 1: Identify \( u \) and \( dv \) We will choose: - \( u = a^x \) (which we will differentiate) - \( dv = e^x \, dx \) (which we will integrate) ### Step 2: Differentiate \( u \) and Integrate \( dv \) Now we find \( du \) and \( v \): - Differentiate \( u \): \[ du = a^x \ln(a) \, dx \] - Integrate \( dv \): \[ v = e^x \] ### Step 3: Apply the Integration by Parts Formula The integration by parts formula is given by: \[ \int u \, dv = uv - \int v \, du \] Substituting our values into this formula: \[ \int a^x e^x \, dx = a^x e^x - \int e^x (a^x \ln(a)) \, dx \] ### Step 4: Simplify the Integral Now, we can factor out \( \ln(a) \): \[ \int a^x e^x \, dx = a^x e^x - \ln(a) \int a^x e^x \, dx \] ### Step 5: Solve for the Integral Let \( I = \int a^x e^x \, dx \). Then we have: \[ I = a^x e^x - \ln(a) I \] Rearranging gives: \[ I + \ln(a) I = a^x e^x \] \[ I(1 + \ln(a)) = a^x e^x \] Thus, we can solve for \( I \): \[ I = \frac{a^x e^x}{1 + \ln(a)} + C \] ### Final Answer Therefore, the value of the integral is: \[ \int a^x e^x \, dx = \frac{a^x e^x}{1 + \ln(a)} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    PUNEET DOGRA|Exercise Prev year questions|48 Videos
  • HEIGHT & DISTANCE

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTION|35 Videos

Similar Questions

Explore conceptually related problems

What is the value of int a^(x)e^(x)dx

Write a value of int a^(x)e^(x)dx

What is the value of int_0^1 (x-1) e^(-x) dx

What is the value of int_(0)^(1)(x-1)e^(-x) dx ?

What is the value of int(e^(x)(1+x))/(sin^(2)(xe^(x)))dx ?

What is the value of int(e^(x)(1+x))/(cos^(2)(xe^(x)))dx ?

The value of int_(0)^(25)e^(x-[x])dx=

The value of int e^(5log x)dx is

If y=ln(e^(mx)+e^(-mx)) . Then what is the value of (dy)/(dx) at x=0 ?