Home
Class 14
MATHS
int((1)/(cos^(2)x)-(1)/(sin^(2)x))dx...

`int((1)/(cos^(2)x)-(1)/(sin^(2)x))dx`

A

`tanx+cotx+C`

B

`cotx-tanx+C`

C

`-cotx-tanx+C`

D

`cotx+tanx+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \left( \frac{1}{\cos^2 x} - \frac{1}{\sin^2 x} \right) dx\), we can follow these steps: ### Step 1: Rewrite the integrand We can rewrite the integrand using the identities for secant and cosecant: \[ \frac{1}{\cos^2 x} = \sec^2 x \quad \text{and} \quad \frac{1}{\sin^2 x} = \csc^2 x \] Thus, the integral becomes: \[ \int \left( \sec^2 x - \csc^2 x \right) dx \] ### Step 2: Separate the integral We can separate the integral into two parts: \[ \int \sec^2 x \, dx - \int \csc^2 x \, dx \] ### Step 3: Integrate each term Now we can integrate each term separately: 1. The integral of \(\sec^2 x\) is: \[ \int \sec^2 x \, dx = \tan x \] 2. The integral of \(\csc^2 x\) is: \[ \int \csc^2 x \, dx = -\cot x \] ### Step 4: Combine the results Combining the results from the two integrals, we have: \[ \tan x - (-\cot x) = \tan x + \cot x \] ### Step 5: Add the constant of integration Finally, we add the constant of integration \(C\): \[ \int \left( \frac{1}{\cos^2 x} - \frac{1}{\sin^2 x} \right) dx = \tan x + \cot x + C \] ### Final Answer Thus, the final answer is: \[ \tan x + \cot x + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    PUNEET DOGRA|Exercise Prev year questions|48 Videos
  • HEIGHT & DISTANCE

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTION|35 Videos

Similar Questions

Explore conceptually related problems

int(1+cos^(2)x)/(sin^(2)x)dx=

int(1)/(cos^(2) x-3 sin^(2) x)dx

int(cos^(3)x)/((1+sin^(2)x)^(2))dx

If A = int_(0)^((pi)/(2))(sin^(3)x)/(1+cos^(2)s)dx and B=int_(0)^((pi)/(2))(cos^(2)x)/(1+sin^(2)x)dx , then (2A)/(B) is equal to

Evaluate: int(1)/(sin^(2)x cos^(2)x)dx

int(ln(1+sin^(2)x))/(cos^(2)x)dx

int(cos^(2)x)/(1+sinx)dx+int(sin^(2)x)/(1-cosx)dx=

int(1)/(cos2x+sin^(2)x)dx

int((1+2sin x)/(cos^(2)x))dx

int(1)/(cos^(2)x+sin2x)dx