Home
Class 14
MATHS
What is int(sinsqrt(x))/(sqrt(x))dx is e...

What is `int(sinsqrt(x))/(sqrt(x))dx` is equal to ?

A

`(cossqrt(x))/(2)+c`

B

`2cossqrt(x)+C`

C

`(-cossqrt(x))/(2)+C`

D

`-2cossqrt(x)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sin(\sqrt{x})}{\sqrt{x}} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( u = \sqrt{x} \). Then, we have: \[ x = u^2 \] Differentiating both sides gives: \[ dx = 2u \, du \] ### Step 2: Rewrite the Integral Now, we can rewrite the integral in terms of \( u \): \[ \sqrt{x} = u \quad \text{and} \quad dx = 2u \, du \] Thus, the integral becomes: \[ \int \frac{\sin(\sqrt{x})}{\sqrt{x}} \, dx = \int \frac{\sin(u)}{u} (2u \, du) \] This simplifies to: \[ \int 2 \sin(u) \, du \] ### Step 3: Integrate Now we can integrate: \[ \int 2 \sin(u) \, du = -2 \cos(u) + C \] ### Step 4: Substitute Back Now we substitute back \( u = \sqrt{x} \): \[ -2 \cos(\sqrt{x}) + C \] ### Final Answer Thus, the value of the integral is: \[ \int \frac{\sin(\sqrt{x})}{\sqrt{x}} \, dx = -2 \cos(\sqrt{x}) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    PUNEET DOGRA|Exercise Prev year questions|48 Videos
  • HEIGHT & DISTANCE

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTION|35 Videos

Similar Questions

Explore conceptually related problems

int(a^(sqrt(x)))/(sqrt(x))dx is equal to

int(sqrt(x))/(1+4sqrt(x^(3)))dx is equal to

int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "

inte^(sqrt(x))dx is equal to

int(3^(x))/(sqrt(9^(x)-1))dx is equal to

int(a^(sqrt(x)))/(sqrt(x))dx equals

int sqrt((a+x)/(a-x))dx is equal to

int(dx)/(sqrt(x-x^(2))) is equal to

int(x^(2)+1)sqrt(x+1)dx is equal to