Home
Class 14
MATHS
What is intsin^(-1)(cosx) dx equal to ?...

What is `intsin^(-1)(cosx)` dx equal to ?

A

`(xpi)/(2)-(x^(2))/(2)+k`

B

`(pi)/(2)+(x^(2))/(2)+k`

C

`-(xpi)/(2)-(x^(2))/(2)+k`

D

`(pi)/(2)-(pi)^(2)/(2)+k`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sin^{-1}(\cos x) \, dx \), we can follow these steps: ### Step 1: Rewrite the integral using a trigonometric identity We know that: \[ \sin\left(\frac{\pi}{2} - \theta\right) = \cos(\theta) \] Thus, we can express \( \cos x \) in terms of sine: \[ \sin^{-1}(\cos x) = \frac{\pi}{2} - x \] This allows us to rewrite the integral: \[ \int \sin^{-1}(\cos x) \, dx = \int \left(\frac{\pi}{2} - x\right) \, dx \] ### Step 2: Separate the integral Now we can separate the integral into two parts: \[ \int \left(\frac{\pi}{2} - x\right) \, dx = \int \frac{\pi}{2} \, dx - \int x \, dx \] ### Step 3: Integrate each term Now we can integrate each term separately: 1. The integral of a constant: \[ \int \frac{\pi}{2} \, dx = \frac{\pi}{2} x \] 2. The integral of \( x \): \[ \int x \, dx = \frac{x^2}{2} \] ### Step 4: Combine the results Combining the results from the two integrals gives us: \[ \int \sin^{-1}(\cos x) \, dx = \frac{\pi}{2} x - \frac{x^2}{2} + C \] where \( C \) is the constant of integration. ### Final Answer Thus, the final answer is: \[ \int \sin^{-1}(\cos x) \, dx = \frac{\pi}{2} x - \frac{x^2}{2} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    PUNEET DOGRA|Exercise Prev year questions|48 Videos
  • HEIGHT & DISTANCE

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTION|35 Videos

Similar Questions

Explore conceptually related problems

What is intsin^(3)xcosxdx equal to ?

intsin^2x/(1+cosx)dx

If cosxne-1 , then what is (sinx)/(1+cosx) equal to ?

intsin^2x/(1+cosx)^2dx

intsin^2x/(1+cosx)^2dx

int(1)/(cosx-sinx)dx is equal to

intsin2xlog_(e)cosx dx is equal to

The value of intsin^(3)x sqrt(cosx)dx is equal to (where, c is the constant of integration)