Home
Class 14
MATHS
What is int(e^(-x)+1)^(-1)dx equal to ?...

What is `int(e^(-x)+1)^(-1)dx` equal to ?

A

`log(e^(x)+1)+C`

B

`log(e^(x)-1)+C`

C

`log(e^(-x)+1)+C`

D

`log(e^(-x)-1)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (e^{-x} + 1)^{-1} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ \int (e^{-x} + 1)^{-1} \, dx = \int \frac{1}{e^{-x} + 1} \, dx \] ### Step 2: Simplify the Denominator Next, we can factor out \( e^{-x} \) from the denominator: \[ = \int \frac{1}{e^{-x}(1 + e^{x})} \, dx = \int \frac{e^{x}}{1 + e^{x}} \, dx \] ### Step 3: Substitution Now, we can use substitution. Let: \[ t = 1 + e^{x} \implies dt = e^{x} \, dx \quad \Rightarrow \quad dx = \frac{dt}{e^{x}} \] Substituting \( e^{x} = t - 1 \) into the equation gives: \[ dx = \frac{dt}{t - 1} \] ### Step 4: Substitute in the Integral Now substitute \( t \) into the integral: \[ \int \frac{e^{x}}{1 + e^{x}} \, dx = \int \frac{(t - 1)}{t} \cdot \frac{dt}{t - 1} = \int \frac{1}{t} \, dt \] ### Step 5: Integrate Now we can integrate: \[ \int \frac{1}{t} \, dt = \ln |t| + C \] ### Step 6: Substitute Back Substituting back for \( t \): \[ = \ln |1 + e^{x}| + C \] ### Final Answer Thus, the final result is: \[ \int (e^{-x} + 1)^{-1} \, dx = \ln(1 + e^{x}) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    PUNEET DOGRA|Exercise Prev year questions|48 Videos
  • HEIGHT & DISTANCE

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTION|35 Videos

Similar Questions

Explore conceptually related problems

What is int e^(e^(x)) e^(x) dx equal to ?

What is inte^(e^(x))e^(x) dx equal to ?

What is int_(0)^(1) x(1-x)^(n)dx equal to ?

What is int(x^(4)+1)/(x^(2)+1)dx equal to ?

int(1)/(e^(x)-1)dx is equal to

What is int_(-1)^(1) x|x| dx equal to ?

What is int_(0)^(1)x (1-x)^(9) dx equal to ?

What is int (1)/(1 + e^(x))dx equal to ? where c is a constant of integration

int sqrt(e^(x)-1)dx is equal to

What is int e^(x ln (a)) dx equal to ?