Home
Class 14
MATHS
What is int(x^(4)+1)/(x^(2)+1)dx equal t...

What is `int(x^(4)+1)/(x^(2)+1)dx` equal to ?

A

`(x^(3))/(3)-x+4tan^(-1)x+C`

B

`(x^(3))/(3)+x+4tan^(-1)x+C`

C

`(x^(3))/(3)-x+2tan^(-1)x+C`

D

`(x^(3))/(3)-x-4tan^(-1)x+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x^4 + 1}{x^2 + 1} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We start with the expression: \[ \frac{x^4 + 1}{x^2 + 1} \] We can rewrite \( x^4 + 1 \) as \( (x^4 - 1) + 2 \). Thus, we have: \[ x^4 + 1 = (x^4 - 1) + 2 = (x^2 - 1)(x^2 + 1) + 2 \] So, we can express the integral as: \[ \int \frac{(x^2 - 1)(x^2 + 1) + 2}{x^2 + 1} \, dx \] ### Step 2: Split the integral Now we can split the integral into two parts: \[ \int \frac{(x^2 - 1)(x^2 + 1)}{x^2 + 1} \, dx + \int \frac{2}{x^2 + 1} \, dx \] This simplifies to: \[ \int (x^2 - 1) \, dx + 2 \int \frac{1}{x^2 + 1} \, dx \] ### Step 3: Solve the first integral Now we solve the first integral: \[ \int (x^2 - 1) \, dx = \int x^2 \, dx - \int 1 \, dx \] Using the power rule for integration: \[ \int x^2 \, dx = \frac{x^3}{3} \quad \text{and} \quad \int 1 \, dx = x \] So, we have: \[ \int (x^2 - 1) \, dx = \frac{x^3}{3} - x \] ### Step 4: Solve the second integral Next, we solve the second integral: \[ 2 \int \frac{1}{x^2 + 1} \, dx \] The integral of \( \frac{1}{x^2 + 1} \) is known to be: \[ \int \frac{1}{x^2 + 1} \, dx = \tan^{-1}(x) \] Thus, we have: \[ 2 \int \frac{1}{x^2 + 1} \, dx = 2 \tan^{-1}(x) \] ### Step 5: Combine the results Now, we combine the results of both integrals: \[ \int \frac{x^4 + 1}{x^2 + 1} \, dx = \left( \frac{x^3}{3} - x \right) + 2 \tan^{-1}(x) + C \] ### Final Answer So, the final result is: \[ \int \frac{x^4 + 1}{x^2 + 1} \, dx = \frac{x^3}{3} - x + 2 \tan^{-1}(x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    PUNEET DOGRA|Exercise Prev year questions|48 Videos
  • HEIGHT & DISTANCE

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTION|35 Videos

Similar Questions

Explore conceptually related problems

int(x^(4))/(x^(2)+1)dx is equal to

int(x^(4)+1)/(x^(6)+1)dx is equal to

int(x^(4)+x+1)/(x^(2)-x+1)dx is equal to

int(x^(2)+1)/(x(x^(2)-1))dx is equal to

What is int_(1)^(3) |1-x^(4)| dx equal to ?

int(2x^(3)-1)/(x^(4)+x)dx is equal to

What is int_(0)^(1)x (1-x)^(9) dx equal to ?

int(1)/(x^(2)+4x+13)dx is equal to

What is int_(0)^(1) x(1-x)^(n)dx equal to ?