Home
Class 14
MATHS
IF f(x)=A si n ((pi x)/2)+B and f'(1/2)=...

IF `f(x)=A si n ((pi x)/2)+B and f'(1/2)=sqrt2 and int_0^1 f(x)dx =(2A)/pi` then what is the value of B

A

A) `2/pi`

B

B) `4/pi`

C

C) 0

D

D) 1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given function and conditions. ### Step 1: Write down the function and given conditions We have: \[ f(x) = A \sin\left(\frac{\pi x}{2}\right) + B \] Given: 1. \( f'\left(\frac{1}{2}\right) = \sqrt{2} \) 2. \( \int_0^1 f(x) \, dx = \frac{2A}{\pi} \) ### Step 2: Find the derivative of \( f(x) \) To find \( f'(x) \): \[ f'(x) = A \cdot \frac{d}{dx}\left(\sin\left(\frac{\pi x}{2}\right)\right) + 0 \] Using the chain rule: \[ f'(x) = A \cdot \cos\left(\frac{\pi x}{2}\right) \cdot \frac{\pi}{2} \] Thus: \[ f'(x) = \frac{A\pi}{2} \cos\left(\frac{\pi x}{2}\right) \] ### Step 3: Evaluate \( f'\left(\frac{1}{2}\right) \) Now, substituting \( x = \frac{1}{2} \): \[ f'\left(\frac{1}{2}\right) = \frac{A\pi}{2} \cos\left(\frac{\pi \cdot \frac{1}{2}}{2}\right) = \frac{A\pi}{2} \cos\left(\frac{\pi}{4}\right) \] Since \( \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \): \[ f'\left(\frac{1}{2}\right) = \frac{A\pi}{2} \cdot \frac{\sqrt{2}}{2} = \frac{A\pi\sqrt{2}}{4} \] ### Step 4: Set up the equation from the condition \( f'\left(\frac{1}{2}\right) = \sqrt{2} \) Setting the expression equal to \( \sqrt{2} \): \[ \frac{A\pi\sqrt{2}}{4} = \sqrt{2} \] Dividing both sides by \( \sqrt{2} \): \[ \frac{A\pi}{4} = 1 \] Thus: \[ A\pi = 4 \] \[ A = \frac{4}{\pi} \] ### Step 5: Evaluate the integral \( \int_0^1 f(x) \, dx \) Now we need to evaluate the integral: \[ \int_0^1 f(x) \, dx = \int_0^1 \left(A \sin\left(\frac{\pi x}{2}\right) + B\right) \, dx \] This can be split into two parts: \[ = \int_0^1 A \sin\left(\frac{\pi x}{2}\right) \, dx + \int_0^1 B \, dx \] ### Step 6: Calculate \( \int_0^1 \sin\left(\frac{\pi x}{2}\right) \, dx \) Using the substitution \( u = \frac{\pi x}{2} \), \( du = \frac{\pi}{2}dx \), thus \( dx = \frac{2}{\pi}du \): When \( x = 0 \), \( u = 0 \) and when \( x = 1 \), \( u = \frac{\pi}{2} \): \[ \int_0^1 \sin\left(\frac{\pi x}{2}\right) \, dx = \int_0^{\frac{\pi}{2}} \sin(u) \cdot \frac{2}{\pi} \, du \] \[ = \frac{2}{\pi} \left[-\cos(u)\right]_0^{\frac{\pi}{2}} = \frac{2}{\pi} \left[-\cos\left(\frac{\pi}{2}\right) + \cos(0)\right] = \frac{2}{\pi} (0 + 1) = \frac{2}{\pi} \] ### Step 7: Substitute back into the integral Now substituting back: \[ \int_0^1 f(x) \, dx = A \cdot \frac{2}{\pi} + B \cdot 1 = \frac{4}{\pi} \cdot \frac{2}{\pi} + B = \frac{8}{\pi^2} + B \] ### Step 8: Set the integral equal to \( \frac{2A}{\pi} \) From the given condition: \[ \frac{8}{\pi^2} + B = \frac{2A}{\pi} \] Substituting \( A = \frac{4}{\pi} \): \[ \frac{8}{\pi^2} + B = \frac{2 \cdot \frac{4}{\pi}}{\pi} = \frac{8}{\pi^2} \] ### Step 9: Solve for \( B \) Thus: \[ B = \frac{8}{\pi^2} - \frac{8}{\pi^2} = 0 \] ### Conclusion The value of \( B \) is: \[ B = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS |65 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos
  • DETERMINANTS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |55 Videos

Similar Questions

Explore conceptually related problems

If f(x) = A sin ((pix)/(2)) + B and f'((1)/(2)) = sqrt(2) and int_(0)^(1)f(x) = (2A)/(pi) , then what is the value of B ?

If f(x)=A sin((pi x)/(2))+B,f'((1)/(2))=sqrt(2) and int_(0)^(1)f(x)dx=(2A)/(pi) then constants A and B are

If f(x)=A sin((pi x)/(2))+b,f'((1)/(2))=sqrt(2) and int_(0)^(1)f(x)dx=(2A)/(pi), then constants A and B are (pi)/(2)and(pi)/(2) (b) (2)/(pi) and (3)/(pi)0 and -(4)/(pi) (d) (4)/(pi) and 0

f (x) =a cos (piy)+b, f'((1)/(2))=pi and int _(1//2)^(3//2) f (x) dx =2/pi+1, then find the value of -(12)/(pi) ((sin ^(-1) a )/(3) + cos ^(-1)b ).

If int_(a)^(b)(f(x)-3x)dx=a^(2)-b^(2) then the value of f((pi)/(6)) is

If int_(0)^( pi)f(x)dx=pi+int_(pi)^(1)f(t)dx, then the value of (L) is :

f(0)=1 , f(2)=e^2 , f'(x)=f'(2-x) , then find the value of int_0^(2)f(x)dx

PUNEET DOGRA-DEFINITE INTEGRATION -PREVIOUS YEAR QUESTIONS
  1. IF f(x)=A si n ((pi x)/2)+B and f'(1/2)=sqrt2 and int0^1 f(x)dx =(2A)/...

    Text Solution

    |

  2. What is the value of I1

    Text Solution

    |

  3. In the circuit shown in fig., the value of I1+I2 is

    Text Solution

    |

  4. What is int0^(pi//2) |sin x-cosx|dx equal to

    Text Solution

    |

  5. What is tint0 ^(pi//2) e^(sin x) cos x dx equal to

    Text Solution

    |

  6. What is int(-1)^1 {d/(dx) (tan^-1 1/x)}dx equal to

    Text Solution

    |

  7. What is int2^ s |x-5|dx equal to

    Text Solution

    |

  8. What is inta^b [x] dx+ inta^b [-x]dx equal to where [,] is the greater...

    Text Solution

    |

  9. What is int0^1 x(1-x)^9 dx equal to

    Text Solution

    |

  10. IF inta^b x^1 dx=0 and inta^b x^2 dx=2/3 then what are the values of a...

    Text Solution

    |

  11. What is the value of int(-pi//4)^(pi//4) (sin x- tan x)dx

    Text Solution

    |

  12. What is int0^sqrt2 [x^2]dx equal to where [.] is the greatest integer ...

    Text Solution

    |

  13. What is int1^2 logx dx equal to

    Text Solution

    |

  14. What is int0^pi e^x sin xdx equal to

    Text Solution

    |

  15. What is int0^(2pi) sqrt(1+ sin""x/2 dx) equal to

    Text Solution

    |

  16. The value of int0^(pi//4) sqrt(tan x dx) +int0^(pi//4) sqrt(cot x dx) ...

    Text Solution

    |

  17. What is int0^(pi//2) (d theta)/(1+ cos theta) equal to

    Text Solution

    |

  18. If f(x) and g(x) are continuous functions satisfying f(x)=f(a-x) and g...

    Text Solution

    |

  19. Simplify:- '(137*137 + 137*133 + 133*133) / (137*137*137 - 133*133*13...

    Text Solution

    |

  20. Simplify:- [(7+7+7) ÷ 7]/ [(5+5+5) ÷ 5]

    Text Solution

    |

  21. IF int0^(pi//2) (dx)/(3 cos x+5) =k cot^-1 2. Then what is the value o...

    Text Solution

    |