Home
Class 14
MATHS
What is int(-1)^1 {d/(dx) (tan^-1 1/x)}d...

What is `int_(-1)^1 {d/(dx) (tan^-1 1/x)}dx` equal to

A

0

B

`- pi/4`

C

`- pi/2`

D

`pi/2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS |65 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos
  • DETERMINANTS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |55 Videos

Similar Questions

Explore conceptually related problems

d/dx(tan^(-1)x) is :

Find the value of int_(-1)^(1)(d)/(dx)(tan^(-1)(1)/(x))dx

The value of int_(-1)^(1) (d)/(dx) ("tan"^(1)(1)/(x))dx is

(d)/(dx)(tan^(-1)(birth x))

d/(dx)tan^-1((1-x)/(1+x))=

(d)/(dx)[sec(tan^(-1)x)]=

(d)/(dx)(tan^(-1)((2)/(x^(-1)-x))) is equal to

d/(dx)[tan^(-1)((a-x)/(1+ax))] is equal to

int _( 0) ^(sqrt3) ((1)/(2) (d)/(dx)(tan ^(-1) ""(2x)/(1- x^(2))))dx equals to:

d/(dx) [tan^(-1)(sqrt(x))] =