Home
Class 14
MATHS
What is int0^(2pi) sqrt(1+ sin""x/2 dx) ...

What is `int_0^(2pi) sqrt(1+ sin""x/2 dx)` equal to

A

8

B

4

C

2

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}} \, dx \), we will follow these steps: ### Step 1: Simplify the integrand We start with the expression under the integral: \[ \sqrt{1 + \sin\frac{x}{2}} \] We can use the identity \( \sin\theta = 2\sin\frac{\theta}{2}\cos\frac{\theta}{2} \). However, in this case, we will use the half-angle identity for sine: \[ \sin\frac{x}{2} = \frac{1 - \cos x}{2} \] This gives us: \[ 1 + \sin\frac{x}{2} = 1 + \frac{1 - \cos x}{2} = \frac{2 + 1 - \cos x}{2} = \frac{3 - \cos x}{2} \] Thus, we can rewrite the integral as: \[ \int_0^{2\pi} \sqrt{\frac{3 - \cos x}{2}} \, dx \] ### Step 2: Factor out constants We can factor out the constant from the square root: \[ \int_0^{2\pi} \sqrt{\frac{1}{2}} \sqrt{3 - \cos x} \, dx = \frac{1}{\sqrt{2}} \int_0^{2\pi} \sqrt{3 - \cos x} \, dx \] ### Step 3: Evaluate the integral Now we need to evaluate the integral \( \int_0^{2\pi} \sqrt{3 - \cos x} \, dx \). This integral can be computed using symmetry and known results. The integral \( \int_0^{2\pi} \sqrt{a - b\cos x} \, dx \) has a known result: \[ \int_0^{2\pi} \sqrt{a - b\cos x} \, dx = 2\pi \sqrt{a + b} \] In our case, \( a = 3 \) and \( b = 1 \): \[ \int_0^{2\pi} \sqrt{3 - \cos x} \, dx = 2\pi \sqrt{3 + 1} = 2\pi \sqrt{4} = 2\pi \cdot 2 = 4\pi \] ### Step 4: Combine results Now substituting back into our expression: \[ \frac{1}{\sqrt{2}} \int_0^{2\pi} \sqrt{3 - \cos x} \, dx = \frac{1}{\sqrt{2}} \cdot 4\pi = \frac{4\pi}{\sqrt{2}} = 2\sqrt{2}\pi \] ### Final Answer Thus, the value of the integral \( \int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}} \, dx \) is: \[ \boxed{2\sqrt{2}\pi} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS |65 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos
  • DETERMINANTS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |55 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)sqrt(1-sin 2 x dx) is equal to

What is int_(0)^(pi) (dx)/(1+2 sin^(2) x) equal to ?

int_(0)^(10pi) sqrt(1- sin^(2) x ) dx is equal to

int_(0)^(pi//6) sqrt(1-sin 2x) dx

int_(0)^(2pi) (sin x-|sin x|) dx equal to

int_(0)^( pi/2)sqrt(1-sin x)dx

What is t int_0 ^(pi//2) e^(sin x) cos x dx equal to

int_(0)^(2pi) sin^(5) (x/4) dx is equal to