Home
Class 14
MATHS
The value of int0^(pi//4) sqrt(tan x dx)...

The value of `int_0^(pi//4) sqrt(tan x dx) +int_0^(pi//4) sqrt(cot x dx)` is equal to

A

`pi/4`

B

`pi/2`

C

`pi/(2sqrt2)`

D

`pi/sqrt2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS |65 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos
  • DETERMINANTS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |55 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(pi/4) sqrt(tanx) dx+int_(0)^(pi/4) sqrt(cotx) dx is equal to

int_(0)^(pi//4) tan x dx

int_(0)^(pi//4)sqrt(1+cos2x)dx

(i) int_0^(pi//4) tan x dx (ii) int_(pi//4)^(pi//2) cot x dx

int_(0)^(pi^(2)//4) sin sqrt(x)dx equals to

int_{0}^(pi/4)|tan x|dx