Home
Class 14
MATHS
What is int0^(pi//2) (d theta)/(1+ cos ...

What is `int_0^(pi//2) (d theta)/(1+ cos theta)` equal to

A

`1/2`

B

1

C

`sqrt3`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_0^{\frac{\pi}{2}} \frac{d\theta}{1 + \cos \theta} \), we can follow these steps: ### Step 1: Rewrite the Denominator We start by rewriting the expression \( 1 + \cos \theta \). Using the double angle identity, we have: \[ 1 + \cos \theta = 1 + 2 \cos^2\left(\frac{\theta}{2}\right) - 1 = 2 \cos^2\left(\frac{\theta}{2}\right) \] Thus, we can rewrite our integral as: \[ \int_0^{\frac{\pi}{2}} \frac{d\theta}{1 + \cos \theta} = \int_0^{\frac{\pi}{2}} \frac{d\theta}{2 \cos^2\left(\frac{\theta}{2}\right)} \] ### Step 2: Factor Out the Constant Next, we can factor out the constant \( \frac{1}{2} \) from the integral: \[ = \frac{1}{2} \int_0^{\frac{\pi}{2}} \sec^2\left(\frac{\theta}{2}\right) d\theta \] ### Step 3: Change of Variables Now, we will perform a substitution to simplify the integral. Let: \[ u = \frac{\theta}{2} \quad \Rightarrow \quad d\theta = 2 du \] When \( \theta = 0 \), \( u = 0 \) and when \( \theta = \frac{\pi}{2} \), \( u = \frac{\pi}{4} \). Thus, the integral becomes: \[ = \frac{1}{2} \int_0^{\frac{\pi}{4}} \sec^2(u) \cdot 2 du = \int_0^{\frac{\pi}{4}} \sec^2(u) du \] ### Step 4: Integrate The integral of \( \sec^2(u) \) is: \[ \int \sec^2(u) du = \tan(u) \] So we evaluate: \[ = \left[ \tan(u) \right]_0^{\frac{\pi}{4}} = \tan\left(\frac{\pi}{4}\right) - \tan(0) = 1 - 0 = 1 \] ### Final Result Thus, the value of the integral \( \int_0^{\frac{\pi}{2}} \frac{d\theta}{1 + \cos \theta} \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS |65 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos
  • DETERMINANTS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |55 Videos

Similar Questions

Explore conceptually related problems

int_(0) ^(pi//2) cos^(2) theta d theta =

int_(0)^(2pi) (sin 2 theta)/(a-b cos 2 theta )d theta =

int_(0)^( pi/2) sin^(2)theta cos theta d theta

int_(0)^(pi//8) cos^(3)4 theta d theta=

int_0^(pi/2) sqrt(sintheta)cos^5theta d theta

int(d theta)/(sin theta cos^(3)theta) is equal to

The value of int_(0)^(pi//4) log (1+ tan theta ) d theta is equal to

int _(0) ^(pi) sin ^(2) theta cos theta d theta

What is int(d theta)/(sin^(2)theta+2cos^(2)theta-1) equal to ?

Find int_(0)^(pi//2)(1-cos theta)^(1//2)d theta