Home
Class 14
MATHS
Simplify:- '(137*137 + 137*133 + 133*13...

Simplify:- '(137*137 + 137*133 + 133*133) / (137*137*137 - 133*133*133)'

A

a. 3/2

B

b. 1/2

C

c. 1/3

D

d. 1/4

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((137 \times 137 + 137 \times 133 + 133 \times 133) / (137 \times 137 \times 137 - 133 \times 133 \times 133)\), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \frac{137^2 + 137 \times 133 + 133^2}{137^3 - 133^3} \] ### Step 2: Identify the numerator and denominator The numerator can be recognized as a quadratic expression in terms of \(137\) and \(133\): \[ A^2 + AB + B^2 \quad \text{where } A = 137 \text{ and } B = 133 \] The denominator can be factored using the difference of cubes: \[ A^3 - B^3 = (A - B)(A^2 + AB + B^2) \] ### Step 3: Factor the denominator Using the difference of cubes formula: \[ 137^3 - 133^3 = (137 - 133)(137^2 + 137 \times 133 + 133^2) \] This simplifies to: \[ 4(137^2 + 137 \times 133 + 133^2) \] ### Step 4: Substitute back into the expression Now we can substitute this back into our original expression: \[ \frac{137^2 + 137 \times 133 + 133^2}{4(137^2 + 137 \times 133 + 133^2)} \] ### Step 5: Cancel the common terms The \(137^2 + 137 \times 133 + 133^2\) in the numerator and denominator cancels out: \[ \frac{1}{4} \] ### Final Answer Thus, the simplified expression is: \[ \frac{1}{4} \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS |65 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos
  • DETERMINANTS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |55 Videos

Similar Questions

Explore conceptually related problems

(137 xx 137 + 137 xx 133 + 133 xx 133)/(137 xx 137 xx 137 - 133 xx 133 xx 133) is equal to

7 : 133 :: 9 : ?

9, 13, 21, 37, 61, 133

What is the sum of 13.3 , 1.33 and 1.0333 ?

What is the sum of 13.3, 1.33, 1.0033 and 1.0333?

17, 21, 37, 73, 137, 237, ….

1, 14, 31, 64, 133, 264