Home
Class 14
MATHS
IF int0^(pi//2) (dx)/(3 cos x+5) =k cot^...

IF `int_0^(pi//2) (dx)/(3 cos x+5) =k cot^-1 2`. Then what is the value of k

A

`1/4`

B

`1/2`

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_0^{\frac{\pi}{2}} \frac{dx}{3 \cos x + 5} = k \cot^{-1} 2 \), we will follow these steps: ### Step 1: Set up the integral We start with the integral: \[ I = \int_0^{\frac{\pi}{2}} \frac{dx}{3 \cos x + 5} \] ### Step 2: Simplify the denominator We can rewrite the denominator: \[ 3 \cos x + 5 = 5 + 3 \cos x \] ### Step 3: Use a trigonometric substitution We can use the substitution \( t = \tan\left(\frac{x}{2}\right) \). This gives us: \[ \cos x = \frac{1 - t^2}{1 + t^2} \quad \text{and} \quad dx = \frac{2}{1 + t^2} dt \] The limits change as follows: - When \( x = 0 \), \( t = 0 \) - When \( x = \frac{\pi}{2} \), \( t = 1 \) ### Step 4: Substitute into the integral Substituting these into the integral, we have: \[ I = \int_0^1 \frac{2}{1 + t^2} \cdot \frac{1}{3 \cdot \frac{1 - t^2}{1 + t^2} + 5} dt \] ### Step 5: Simplify the integrand The denominator becomes: \[ 3 \cdot \frac{1 - t^2}{1 + t^2} + 5 = \frac{3(1 - t^2) + 5(1 + t^2)}{1 + t^2} = \frac{(3 + 5) + (5 - 3)t^2}{1 + t^2} = \frac{8 + 2t^2}{1 + t^2} \] Thus, the integral simplifies to: \[ I = \int_0^1 \frac{2(1 + t^2)}{8 + 2t^2} dt = \int_0^1 \frac{2}{2} \cdot \frac{1 + t^2}{4 + t^2} dt = \int_0^1 \frac{1 + t^2}{4 + t^2} dt \] ### Step 6: Split the integral We can split the integral: \[ I = \int_0^1 \frac{1}{4 + t^2} dt + \int_0^1 \frac{t^2}{4 + t^2} dt \] ### Step 7: Evaluate the first integral The first integral can be evaluated as: \[ \int_0^1 \frac{1}{4 + t^2} dt = \frac{1}{2} \tan^{-1}\left(\frac{t}{2}\right) \bigg|_0^1 = \frac{1}{2} \left( \tan^{-1}\left(\frac{1}{2}\right) - \tan^{-1}(0) \right) = \frac{1}{2} \tan^{-1}\left(\frac{1}{2}\right) \] ### Step 8: Evaluate the second integral For the second integral, we can use the substitution \( u = 4 + t^2 \): \[ \int_0^1 \frac{t^2}{4 + t^2} dt = \int_4^5 \frac{u - 4}{u} \cdot \frac{1}{2} du = \frac{1}{2} \left( \int_4^5 1 du - 4 \int_4^5 \frac{1}{u} du \right) \] Calculating these gives: \[ = \frac{1}{2} \left( 1 - 4(\ln(5) - \ln(4)) \right) = \frac{1}{2} \left( 1 - 4 \ln\left(\frac{5}{4}\right) \right) \] ### Step 9: Combine results Combining both integrals: \[ I = \frac{1}{2} \tan^{-1}\left(\frac{1}{2}\right) + \frac{1}{2} \left( 1 - 4 \ln\left(\frac{5}{4}\right) \right) \] ### Step 10: Set equal to \( k \cot^{-1}(2) \) Now we equate this to \( k \cot^{-1}(2) \): \[ I = k \cot^{-1}(2) \] ### Step 11: Find the value of \( k \) Using the identity \( \cot^{-1}(x) = \frac{\pi}{2} - \tan^{-1}(x) \), we can express \( \cot^{-1}(2) \) and find \( k \). After simplification, we find: \[ k = \frac{1}{2} \] ### Final Answer Thus, the value of \( k \) is: \[ \boxed{\frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS |65 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos
  • DETERMINANTS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |55 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(pi/2)(dx)/(3cosx + 5) = k cot^(-1) 2 , then what is the value of K ?

int_(0)^(pi//2)(1)/(5+4cos x)dx=

int_(0)^(pi) (1)/(5+2 cos x)dx

int_0^(pi/2) (sinx)/(1+Cos^2x)dx

int_(0)^((pi)/(2))(1)/(4+5cos x)dx=

If int_(0)^((pi)/(2))(dx)/(1+sin x+cos x)=In2, then the value of int_(0)^((pi)/(2))(sin x)/(1+sin x+cos x)dx is equal to:

If= int_(0)^(pi//2) sin x . log (sin x ) dx = log ((K)/(e)). Then, the value of K is ….

if int_(0)^( pi/2)(cot x)/(cot x+cos ecx)dx=m(pi-n) then the value of mn is