Home
Class 14
MATHS
The value of inta^b (x^7+sinx)/(cos x) d...

The value of `int_a^b (x^7+sinx)/(cos x) dx` where a+b=0 is

A

`2b-a sin (b-a)`

B

`a+3b cos (b-a)`

C

`sina-(b-a) cos b`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_a^b \frac{x^7 + \sin x}{\cos x} \, dx \) given that \( a + b = 0 \), we can follow these steps: ### Step 1: Understand the limits of integration Since \( a + b = 0 \), we can express \( b \) as \( b = -a \). This means our integral can be rewritten as: \[ \int_a^{-a} \frac{x^7 + \sin x}{\cos x} \, dx \] ### Step 2: Use the property of definite integrals We can use the property of definite integrals that states: \[ \int_a^{-a} f(x) \, dx = -\int_{-a}^a f(-x) \, dx \] Thus, we can rewrite our integral as: \[ \int_a^{-a} \frac{x^7 + \sin x}{\cos x} \, dx = -\int_{-a}^a \frac{(-x)^7 + \sin(-x)}{\cos(-x)} \, dx \] ### Step 3: Simplify the integrand Now we simplify the integrand: - \( (-x)^7 = -x^7 \) (since 7 is odd) - \( \sin(-x) = -\sin x \) (since sine is an odd function) - \( \cos(-x) = \cos x \) (since cosine is an even function) Putting this together, we have: \[ \int_a^{-a} \frac{x^7 + \sin x}{\cos x} \, dx = -\int_{-a}^a \frac{-x^7 - \sin x}{\cos x} \, dx = \int_{-a}^a \frac{x^7 + \sin x}{\cos x} \, dx \] ### Step 4: Combine the results Now we have: \[ \int_a^{-a} \frac{x^7 + \sin x}{\cos x} \, dx = -\int_a^{-a} \frac{x^7 + \sin x}{\cos x} \, dx \] Let \( I = \int_a^{-a} \frac{x^7 + \sin x}{\cos x} \, dx \). Then we can write: \[ I = -I \] ### Step 5: Solve for \( I \) Adding \( I \) to both sides gives: \[ 2I = 0 \implies I = 0 \] ### Final Answer Thus, the value of the integral is: \[ \int_a^b \frac{x^7 + \sin x}{\cos x} \, dx = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS |65 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos
  • DETERMINANTS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |55 Videos

Similar Questions

Explore conceptually related problems

The value of int_(a)^(b) (x^(7) + sinx)/(cosx)dx where a + b = 0 is

int (2 - sinx)/(2 cos x ) dx

int (1-sinx )/ (1-cos x) dx=?

int(sinx)/(a+b cos x)dx

The value of int(cos2x)/(cosx+sinx)dx is

int(sinx)/(1+cos^2x)dx

The value of int_(a)^(b)(|x|)/(x)dx,a

int sinx/(1-cos^2x)dx

int(cos x +sinx)/(sin x-cos x)dx

int(sinx)/(1+cos^2x)dx=