Home
Class 14
MATHS
int(-1)^1 x|x|dx is equal to...

`int_(-1)^1 x|x|dx` is equal to

A

0

B

`2/3`

C

2

D

-2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-1}^{1} x |x| \, dx \), we need to consider the behavior of the function \( x |x| \) over the interval from -1 to 1. The absolute value function \( |x| \) can be expressed differently depending on whether \( x \) is positive or negative. ### Step 1: Split the Integral The function \( |x| \) can be defined as: - \( |x| = -x \) when \( x < 0 \) - \( |x| = x \) when \( x \geq 0 \) Thus, we can split the integral into two parts: \[ \int_{-1}^{1} x |x| \, dx = \int_{-1}^{0} x (-x) \, dx + \int_{0}^{1} x (x) \, dx \] ### Step 2: Simplify Each Integral Now we simplify each part: 1. For \( x \in [-1, 0] \): \[ \int_{-1}^{0} x (-x) \, dx = \int_{-1}^{0} -x^2 \, dx \] 2. For \( x \in [0, 1] \): \[ \int_{0}^{1} x (x) \, dx = \int_{0}^{1} x^2 \, dx \] ### Step 3: Evaluate the Integrals Now we evaluate each integral: 1. Evaluate \( \int_{-1}^{0} -x^2 \, dx \): \[ \int -x^2 \, dx = -\frac{x^3}{3} \Big|_{-1}^{0} = -\frac{0^3}{3} + \frac{(-1)^3}{3} = 0 + \frac{1}{3} = \frac{1}{3} \] 2. Evaluate \( \int_{0}^{1} x^2 \, dx \): \[ \int x^2 \, dx = \frac{x^3}{3} \Big|_{0}^{1} = \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3} - 0 = \frac{1}{3} \] ### Step 4: Combine the Results Now we combine the results of the two integrals: \[ \int_{-1}^{1} x |x| \, dx = \frac{1}{3} + \frac{1}{3} = \frac{2}{3} \] ### Final Answer Thus, the value of the integral \( \int_{-1}^{1} x |x| \, dx \) is: \[ \frac{2}{3} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS |65 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos
  • DETERMINANTS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |55 Videos

Similar Questions

Explore conceptually related problems

int_(-1)^(1)|x|dx is equal to

The value of int_(-1)^(1)(x|x|)dx is equal to

Knowledge Check

  • int_(-1)^1|1+x|dx is equal to

    A
    `-2`
    B
    0
    C
    2
    D
    4
  • The value of int_(-1)^(1)(x|x|)dx is equal to

    A
    1
    B
    `(1)/(2)`
    C
    0
    D
    None of these
  • What is int_(-1)^(1) x|x| dx equal to ?

    A
    `2`
    B
    `1`
    C
    `0`
    D
    `-1`
  • Similar Questions

    Explore conceptually related problems

    int_(1)^(2)|x-1|dx is equal to

    int_(-1)^2|x|^3dx is equal to

    int_(1)^(e)1/x dx is equal to

    int_(0)^(4)|x-1| dx is equal to

    int_(-1)^(1) |(1-x)|dx equals