Home
Class 14
MATHS
What is int(-pi//6)^(pi//6) (sin^5 x cos...

What is `int_(-pi//6)^(pi//6) (sin^5 x cos^3 x)/x^4` dx equal to

A

`pi/2`

B

`pi/4`

C

`pi/8`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \frac{\sin^5 x \cos^3 x}{x^4} \, dx, \] we will determine whether the integrand is an even function or an odd function. ### Step 1: Define the function Let \[ f(x) = \frac{\sin^5 x \cos^3 x}{x^4}. \] ### Step 2: Check if the function is even or odd To check if \( f(x) \) is even or odd, we will compute \( f(-x) \): \[ f(-x) = \frac{\sin^5(-x) \cos^3(-x)}{(-x)^4}. \] Using the properties of sine and cosine: - \(\sin(-x) = -\sin(x)\) - \(\cos(-x) = \cos(x)\) Substituting these into \( f(-x) \): \[ f(-x) = \frac{(-\sin x)^5 \cos^3 x}{x^4} = \frac{-\sin^5 x \cos^3 x}{x^4}. \] ### Step 3: Simplify \( f(-x) \) This simplifies to: \[ f(-x) = -\frac{\sin^5 x \cos^3 x}{x^4} = -f(x). \] ### Step 4: Conclusion about the function Since \( f(-x) = -f(x) \), the function \( f(x) \) is an odd function. ### Step 5: Evaluate the integral The integral of an odd function over a symmetric interval around zero is zero: \[ \int_{-a}^{a} f(x) \, dx = 0. \] Thus, we conclude that: \[ \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \frac{\sin^5 x \cos^3 x}{x^4} \, dx = 0. \] ### Final Answer \[ \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \frac{\sin^5 x \cos^3 x}{x^4} \, dx = 0. \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS |65 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos
  • DETERMINANTS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |55 Videos

Similar Questions

Explore conceptually related problems

int _(-pi//2)^(pi//2) sin^(4) x cos^(6) x dx is equal to

int_(pi//6)^(pi//3) sin(3x)dx=

int_(0)^(pi//6) (sin x) /(cos^(3)x) dx is

int_(-pi//2)^(pi//2) (5sin^3 x+8sinx+4 cos^2x) dx

int_(0)^(pi//4) (sin x +cos x)/(3+sin2x)dx is equal to

int_(pi//6)^(pi//3)cos^(2)x dx=

int_(0)^(pi//6)(sinx)/(cos^(3)x) dx is equal to

int_(pi/6)^( pi/3)sin(3x)dx