Home
Class 14
MATHS
What is the value of int0^(pi//2) sin 2x...

What is the value of `int_0^(pi//2) sin 2x ln (cot x)` dx

A

A. 0

B

B. `pi ln 2`

C

C. `-pi ln2`

D

D. `(pi ln 2)/`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\frac{\pi}{2}} \sin(2x) \ln(\cot x) \, dx \), we can use the property of definite integrals that states: \[ \int_0^A f(x) \, dx = \int_0^A f(A - x) \, dx \] In our case, \( A = \frac{\pi}{2} \). Therefore, we can rewrite the integral as follows: ### Step 1: Apply the property of definite integrals \[ I = \int_0^{\frac{\pi}{2}} \sin(2x) \ln(\cot x) \, dx = \int_0^{\frac{\pi}{2}} \sin(2(\frac{\pi}{2} - x)) \ln(\cot(\frac{\pi}{2} - x)) \, dx \] ### Step 2: Simplify the expression Now, we simplify the terms: - \( \sin(2(\frac{\pi}{2} - x)) = \sin(\pi - 2x) = \sin(2x) \) - \( \cot(\frac{\pi}{2} - x) = \tan(x) \) Thus, we have: \[ I = \int_0^{\frac{\pi}{2}} \sin(2x) \ln(\tan x) \, dx \] ### Step 3: Combine the two integrals Now we have two expressions for \( I \): 1. \( I = \int_0^{\frac{\pi}{2}} \sin(2x) \ln(\cot x) \, dx \) 2. \( I = \int_0^{\frac{\pi}{2}} \sin(2x) \ln(\tan x) \, dx \) We can express the second integral in terms of the first: \[ I = \int_0^{\frac{\pi}{2}} \sin(2x) \ln(\tan x) \, dx = \int_0^{\frac{\pi}{2}} \sin(2x) \ln\left(\frac{1}{\cot x}\right) \, dx \] ### Step 4: Rewrite the logarithmic expression Using the property of logarithms: \[ \ln(\tan x) = -\ln(\cot x) \] Thus, we can write: \[ I = \int_0^{\frac{\pi}{2}} \sin(2x) (-\ln(\cot x)) \, dx = -I \] ### Step 5: Solve for \( I \) Adding both expressions for \( I \): \[ I + I = 0 \implies 2I = 0 \implies I = 0 \] ### Conclusion The value of the integral is: \[ \int_0^{\frac{\pi}{2}} \sin(2x) \ln(\cot x) \, dx = 0 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS |65 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos
  • DETERMINANTS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |55 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi/2) sin x dx

The value of int_0^(pi/2)sin2x.log tanxdx is

Knowledge Check

  • The value of int_(0)^(pi//2) |sin x-cos x|dx is

    A
    0
    B
    `2 (sqrt2-1)`
    C
    `2 sqrt2`
    D
    `2(sqrt2+1)`
  • The value of int_(0)^(pi//2) (sin 8x log cot x)/(cos 2x)dx , is

    A
    0
    B
    `pi`
    C
    `(5pi)/(2)`
    D
    `(3pi)/(2)`
  • What is int_(0)^(pi//2) sin 2x ln (cot x) dx equal to ?

    A
    `0`
    B
    `pi ln 2`
    C
    `-pi ln 2`
    D
    `(pi ln 2)/(2)`
  • Similar Questions

    Explore conceptually related problems

    int_0^(pi/2) sin x sin 2x dx

    Prove that int_0^(pi//2) sin 2x log tanx dx=0

    The value of int _(0)^(pi//2) log ("cosec "x) dx is

    int_(0)^(pi//2) sin 2x log (tan x) dx is equal to

    int_(0)^(pi//2)(sin 8x.log(cot x))/(cos 2x)dx=