Home
Class 14
MATHS
What is the value of int0^1 (tan^-1 x )/...

What is the value of `int_0^1 (tan^-1 x )/(1+x^2) dx dx`

A

`pi^2/8`

B

`pi^2/32`

C

`pi/4`

D

`pi/8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^1 \frac{\tan^{-1} x}{1+x^2} \, dx \), we will use substitution. ### Step 1: Substitution Let \( y = \tan^{-1} x \). Then, we differentiate to find \( dx \): \[ \frac{dy}{dx} = \frac{1}{1+x^2} \implies dx = (1+x^2) \, dy \] ### Step 2: Change the limits of integration When \( x = 0 \): \[ y = \tan^{-1}(0) = 0 \] When \( x = 1 \): \[ y = \tan^{-1}(1) = \frac{\pi}{4} \] ### Step 3: Substitute in the integral Now we substitute \( y \) and \( dx \) into the integral: \[ I = \int_0^{\frac{\pi}{4}} \frac{y}{1+x^2} (1+x^2) \, dy \] The \( 1+x^2 \) terms cancel out: \[ I = \int_0^{\frac{\pi}{4}} y \, dy \] ### Step 4: Evaluate the integral Now we evaluate the integral: \[ I = \int_0^{\frac{\pi}{4}} y \, dy = \left[ \frac{y^2}{2} \right]_0^{\frac{\pi}{4}} = \frac{(\frac{\pi}{4})^2}{2} - \frac{0^2}{2} \] Calculating this gives: \[ I = \frac{\frac{\pi^2}{16}}{2} = \frac{\pi^2}{32} \] ### Final Result Thus, the value of the integral is: \[ I = \frac{\pi^2}{32} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS |65 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos
  • DETERMINANTS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |55 Videos

Similar Questions

Explore conceptually related problems

What is the value of int_0^1 xe^(x^2) dx

What is the value of int_0^1 (x-1) e^(-x) dx

Find: int_0^1x (tan^-1 x)^2 dx

int_0^1 tan^1x/(1+x^2)dx

If int_(0)^(1) tan^(-1) x dx = p , then the value of int_(0)^(1) tan^(-1)((1-x)/(1 +x)) dx is

2int_(0)^(1)(tan^(-1)x)/(x)dx=

What is the value of int_(0)^(1)(x-1)e^(-x) dx ?

inte^(tan^-1x)(1+x/(1+x^2))dx

The value of int_0^1 (x^(3))/(1+x^(8))dx is