Home
Class 14
MATHS
What is int0^pi (dx)/(1+2sin^2x) equal ...

What is `int_0^pi (dx)/(1+2sin^2x) ` equal to

A

`pi`

B

`pi/3`

C

`pi/sqrt3`

D

`(2 pi)/sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^\pi \frac{dx}{1 + 2 \sin^2 x} \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int_0^\pi \frac{dx}{1 + 2 \sin^2 x} \] ### Step 2: Use a Trigonometric Identity We can use the identity \( \sin^2 x = 1 - \cos^2 x \) to rewrite the integral: \[ I = \int_0^\pi \frac{dx}{1 + 2(1 - \cos^2 x)} = \int_0^\pi \frac{dx}{3 - 2\cos^2 x} \] ### Step 3: Multiply by \(\cos^2 x\) To simplify the integral, we multiply the numerator and the denominator by \(\cos^2 x\): \[ I = \int_0^\pi \frac{\cos^2 x \, dx}{\cos^2 x(3 - 2\cos^2 x)} = \int_0^\pi \frac{\cos^2 x \, dx}{3\cos^2 x - 2\cos^4 x} \] ### Step 4: Use Substitution Let \( t = \cot x \), which implies \( dx = -\frac{dt}{1 + t^2} \). The limits change as follows: when \( x = 0 \), \( t \to \infty \) and when \( x = \pi \), \( t \to -\infty \). Thus, we have: \[ I = \int_{\infty}^{-\infty} \frac{\frac{1}{t^2 + 1}}{3\frac{1}{t^2} - 2\frac{1}{t^4}} (-dt) \] ### Step 5: Simplify the Integral This becomes: \[ I = \int_{-\infty}^{\infty} \frac{dt}{3 + 2t^2} \] ### Step 6: Evaluate the Integral The integral can be evaluated using the formula for the integral of the form \( \int \frac{dx}{a + bx^2} \): \[ I = \frac{\pi}{\sqrt{3 \cdot 2}} = \frac{\pi}{\sqrt{6}} \] ### Step 7: Final Result Thus, the final result is: \[ I = \frac{\pi}{\sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS |65 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos
  • DETERMINANTS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |55 Videos

Similar Questions

Explore conceptually related problems

What is int_0^pi (xdx)/(1+ sin x) equal to

What is int_(0)^(pi) (dx)/(1+2 sin^(2) x) equal to ?

What is int_(0)^(pi)e^(x) sin x dx equal to ?

int_(0)^(pi)(1)/(1+sin x)dx is equal to

What is int_0^(2pi) sqrt(1+ sin""x/2 dx) equal to

What is int_0^(pi//2) |sin x-cosx|dx equal to

int_0^(2pi) sin^5 (x/4) dx is equal to

int_(0)^(pi)sin^(2)x dx is equal to