Home
Class 14
MATHS
IF In=int0^(pi//4) tan^n x dx then what ...

IF `I_n=int_0^(pi//4) tan^n x dx` then what is `I_n+I_(n+2)` equal to

A

A. `1/n`

B

B. `1/((n+1))`

C

C. `n/((n-1))`

D

D. `1/((n-2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate \( I_n + I_{n+2} \) where \( I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \). ### Step 1: Write down the expressions for \( I_n \) and \( I_{n+2} \) We have: \[ I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \] \[ I_{n+2} = \int_0^{\frac{\pi}{4}} \tan^{n+2} x \, dx \] ### Step 2: Combine the integrals Now, we want to find \( I_n + I_{n+2} \): \[ I_n + I_{n+2} = \int_0^{\frac{\pi}{4}} \tan^n x \, dx + \int_0^{\frac{\pi}{4}} \tan^{n+2} x \, dx \] This can be combined into a single integral: \[ I_n + I_{n+2} = \int_0^{\frac{\pi}{4}} \left( \tan^n x + \tan^{n+2} x \right) \, dx \] ### Step 3: Factor out \( \tan^n x \) We can factor out \( \tan^n x \): \[ I_n + I_{n+2} = \int_0^{\frac{\pi}{4}} \tan^n x \left( 1 + \tan^2 x \right) \, dx \] ### Step 4: Use the identity \( 1 + \tan^2 x = \sec^2 x \) Using the trigonometric identity \( 1 + \tan^2 x = \sec^2 x \), we can rewrite the integral: \[ I_n + I_{n+2} = \int_0^{\frac{\pi}{4}} \tan^n x \sec^2 x \, dx \] ### Step 5: Substitute \( t = \tan x \) Let \( t = \tan x \). Then, \( dt = \sec^2 x \, dx \). The limits change as follows: - When \( x = 0 \), \( t = \tan(0) = 0 \) - When \( x = \frac{\pi}{4} \), \( t = \tan\left(\frac{\pi}{4}\right) = 1 \) Thus, we have: \[ I_n + I_{n+2} = \int_0^1 t^n \, dt \] ### Step 6: Evaluate the integral Now we can evaluate the integral: \[ \int_0^1 t^n \, dt = \left[ \frac{t^{n+1}}{n+1} \right]_0^1 = \frac{1^{n+1}}{n+1} - \frac{0^{n+1}}{n+1} = \frac{1}{n+1} \] ### Final Result Thus, we find: \[ I_n + I_{n+2} = \frac{1}{n+1} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS |65 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos
  • DETERMINANTS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |55 Videos

Similar Questions

Explore conceptually related problems

If I_(n) int_(0)^(4) x dx then what is I_(n) + I_(n-2) equal to ?

I_n=int_0^(pi//4) tan^n x dx, then lim_(ntooo) n [I_n + I_(n+2)] is equal to (i)1/2 (ii)1 (iii)infty (iv) 0

If I_n=int_0^(pi/4) tan^nx then lim_(nrarroo)n(I_n+I_(n-2)) equals (A) 1/2 (B) 1 (C) oo (D) 0

If I_(n)=int_(0)^(pi//4)tan^(n)x dx, then 7(I_(6)+I_(8))=

If l_(n)=int_(0)^(pi//4) tan^(n)x dx, n in N "then" I_(n+2)+I_(n) equals

If I_(n)=int_(0)^(pi//2) x^(n) sin x dx , then I_(4)+12I_(2) is equal to\

If I_n=int_0^(pi/2) x^n sinx dx , then [I_4+12I_2] is equal to (A) 4pi (B) 3(pi/2)^3 (C) (pi/2)^2 (D) 4(pi/2)^3