Home
Class 14
MATHS
What is the value of the integral int1^p...

What is the value of the integral `int_1^pi e^x (1/x-1/x^2)dx`

A

`e(e/2-1)`

B

`e(e-1)`

C

`e-1/e`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_1^{\pi} e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx \), we can simplify the expression inside the integral and apply integration techniques. ### Step 1: Rewrite the Integral We can rewrite the integral as: \[ I = \int_1^{\pi} e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx = \int_1^{\pi} e^x \cdot \frac{1}{x} dx - \int_1^{\pi} e^x \cdot \frac{1}{x^2} dx \] ### Step 2: Identify the First Integral Let’s denote: \[ I_1 = \int_1^{\pi} e^x \cdot \frac{1}{x} dx \] and \[ I_2 = \int_1^{\pi} e^x \cdot \frac{1}{x^2} dx \] Thus, we have: \[ I = I_1 - I_2 \] ### Step 3: Solve \( I_1 \) For \( I_1 \), we can use integration by parts. Let: - \( u = \frac{1}{x} \) so that \( du = -\frac{1}{x^2} dx \) - \( dv = e^x dx \) so that \( v = e^x \) Using integration by parts: \[ I_1 = \left[ \frac{e^x}{x} \right]_1^{\pi} - \int_1^{\pi} e^x \left(-\frac{1}{x^2}\right) dx \] This simplifies to: \[ I_1 = \left[ \frac{e^{\pi}}{\pi} - \frac{e^1}{1} \right] + I_2 \] ### Step 4: Substitute \( I_1 \) in \( I \) Now substituting \( I_1 \) back into our expression for \( I \): \[ I = \left[ \frac{e^{\pi}}{\pi} - e \right] + I_2 - I_2 \] This simplifies to: \[ I = \frac{e^{\pi}}{\pi} - e \] ### Step 5: Final Result Thus, the value of the integral \( I \) is: \[ I = \frac{e^{\pi}}{\pi} - e \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS |65 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos
  • DETERMINANTS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |55 Videos

Similar Questions

Explore conceptually related problems

What is the value of the integral int_(-1)^1 |x|dx

What is the value the integral int_(-1)^(1)|x| dx ?

The value of the integral int_0^1 x(1-x)^n dx=

The value of the integral int_(1)^(3)|(x-1)(x-2)|dx is

The value of the integral int_(-1)^(1) (x-[2x]) dx,is

The value of the integral int_(0)^(1) x(1-x)^(n)dx , is

The value of the integral int_(0)^(pi)(1-|sin 8x|)dx is

Find the Definite Integrals : int_1^2 e^x((x-1)/x^2) dx