Home
Class 14
MATHS
What is the value of the integral int(-1...

What is the value of the integral `int_(-1)^1 |x|dx`

A

1

B

0

C

2

D

-1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-1}^{1} |x| \, dx \), we can break it down into two parts due to the absolute value function. ### Step-by-step Solution: 1. **Understanding the Absolute Value Function**: The function \( |x| \) can be defined piecewise: - For \( x < 0 \), \( |x| = -x \) - For \( x \geq 0 \), \( |x| = x \) 2. **Splitting the Integral**: We can split the integral at \( x = 0 \): \[ \int_{-1}^{1} |x| \, dx = \int_{-1}^{0} |x| \, dx + \int_{0}^{1} |x| \, dx \] 3. **Evaluating the First Integral**: For the interval from \(-1\) to \(0\): \[ \int_{-1}^{0} |x| \, dx = \int_{-1}^{0} -x \, dx \] Now, we calculate this integral: \[ = -\left[ \frac{x^2}{2} \right]_{-1}^{0} = -\left( \frac{0^2}{2} - \frac{(-1)^2}{2} \right) = -\left( 0 - \frac{1}{2} \right) = \frac{1}{2} \] 4. **Evaluating the Second Integral**: For the interval from \(0\) to \(1\): \[ \int_{0}^{1} |x| \, dx = \int_{0}^{1} x \, dx \] Now, we calculate this integral: \[ = \left[ \frac{x^2}{2} \right]_{0}^{1} = \left( \frac{1^2}{2} - \frac{0^2}{2} \right) = \frac{1}{2} \] 5. **Combining the Results**: Now we combine the results of both integrals: \[ \int_{-1}^{1} |x| \, dx = \frac{1}{2} + \frac{1}{2} = 1 \] ### Final Answer: The value of the integral \( \int_{-1}^{1} |x| \, dx \) is \( 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS |65 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos
  • DETERMINANTS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |55 Videos

Similar Questions

Explore conceptually related problems

What is the value the integral int_(-1)^(1)|x| dx ?

What is the value of the integral int_1^pi e^x (1/x-1/x^2)dx

The value of the integral int_0^1 x(1-x)^n dx=

What is the value of integral int_0^1 x (1-x)^9 dx

The value of the integral int_(0)^(2)|x^(2)-1|dx is

The value of the integral int_(-1)^(1) (x-[2x]) dx,is

The value of the integral int_(-1)^(1) sin^(11)x" dx" is

If f(x)-3cos(tan^(-1)x) , then the value of the integral int_(0)^(1)xf''(x)dx is