Home
Class 14
MATHS
What is the value of int(pi//6)^(pi//4) ...

What is the value of `int_(pi//6)^(pi//4) (dx)/(sin x cos x)`

A

A. `2 log sqrt3`

B

B. `log sqrt3`

C

C. `2log 3`

D

D. `4 log 3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{dx}{\sin x \cos x} \), we can follow these steps: ### Step 1: Rewrite the integrand We start by rewriting the integrand using the identity \( \sin x \cos x = \frac{1}{2} \sin(2x) \): \[ \frac{1}{\sin x \cos x} = \frac{2}{\sin(2x)} \] Thus, the integral becomes: \[ \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{dx}{\sin x \cos x} = 2 \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{dx}{\sin(2x)} \] ### Step 2: Change of variable Next, we can use the substitution \( u = 2x \), which gives \( du = 2dx \) or \( dx = \frac{du}{2} \). We also need to change the limits of integration: - When \( x = \frac{\pi}{6} \), \( u = \frac{\pi}{3} \) - When \( x = \frac{\pi}{4} \), \( u = \frac{\pi}{2} \) Substituting these into the integral, we have: \[ 2 \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{dx}{\sin(2x)} = 2 \cdot \frac{1}{2} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{du}{\sin u} = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{du}{\sin u} \] ### Step 3: Evaluate the integral The integral \( \int \frac{du}{\sin u} \) can be evaluated as: \[ \int \frac{du}{\sin u} = \log \left| \tan \left( \frac{u}{2} \right) \right| + C \] Thus, we evaluate: \[ \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{du}{\sin u} = \left[ \log \left| \tan \left( \frac{u}{2} \right) \right| \right]_{\frac{\pi}{3}}^{\frac{\pi}{2}} \] ### Step 4: Apply the limits Now we apply the limits: 1. For \( u = \frac{\pi}{2} \): \[ \tan \left( \frac{\pi/2}{2} \right) = \tan \left( \frac{\pi}{4} \right) = 1 \implies \log(1) = 0 \] 2. For \( u = \frac{\pi}{3} \): \[ \tan \left( \frac{\pi/3}{2} \right) = \tan \left( \frac{\pi}{6} \right) = \frac{1}{\sqrt{3}} \implies \log \left( \frac{1}{\sqrt{3}} \right) = -\frac{1}{2} \log(3) \] Putting it all together: \[ \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{du}{\sin u} = 0 - \left(-\frac{1}{2} \log(3)\right) = \frac{1}{2} \log(3) \] ### Final Answer Thus, the value of the integral \( \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{dx}{\sin x \cos x} \) is: \[ \frac{1}{2} \log(3) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS |65 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos
  • DETERMINANTS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |55 Videos

Similar Questions

Explore conceptually related problems

What is the value of int_(pi//6)^(pi//4) (dx)/(sinx cos x) ?

What is the value of int_(-pi//4)^(pi//4) (sin x- tan x)dx

What is the value of int_((-pi)/(4))^(pi/4) (sin xx tan x) dx ?

int_(pi//4)^(pi//3)(sec x)/(sin x)dx =

Find the value of int_(pi/4)^(pi/3) (sin2x)/(1-cos2x) dx

int_(-pi//4)^(pi//4) e^(-x)sin x" dx" is

The value of int_(-pi)^(pi) sin^(3) x cos^(2)x dx is