Home
Class 14
MATHS
What is int0^(pi//2) (sin^3 x)/(sin^3x+c...

What is `int_0^(pi//2) (sin^3 x)/(sin^3x+cos^3x) dx`

A

`pi`

B

`pi/2`

C

`pi/4`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin^3 x + \cos^3 x} \, dx \), we can use a property of definite integrals. Here’s a step-by-step solution: ### Step 1: Define the integral Let \[ I = \int_0^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin^3 x + \cos^3 x} \, dx \] ### Step 2: Use the property of definite integrals We can use the property: \[ \int_0^{a} f(x) \, dx = \int_0^{a} f(a - x) \, dx \] In our case, let \( a = \frac{\pi}{2} \). Thus, we have: \[ I = \int_0^{\frac{\pi}{2}} \frac{\sin^3\left(\frac{\pi}{2} - x\right)}{\sin^3\left(\frac{\pi}{2} - x\right) + \cos^3\left(\frac{\pi}{2} - x\right)} \, dx \] ### Step 3: Simplify the integral Using the identity \( \sin\left(\frac{\pi}{2} - x\right) = \cos x \) and \( \cos\left(\frac{\pi}{2} - x\right) = \sin x \), we can rewrite the integral: \[ I = \int_0^{\frac{\pi}{2}} \frac{\cos^3 x}{\cos^3 x + \sin^3 x} \, dx \] ### Step 4: Combine the two integrals Now we have two expressions for \( I \): 1. \( I = \int_0^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin^3 x + \cos^3 x} \, dx \) 2. \( I = \int_0^{\frac{\pi}{2}} \frac{\cos^3 x}{\cos^3 x + \sin^3 x} \, dx \) Adding these two equations gives: \[ 2I = \int_0^{\frac{\pi}{2}} \left( \frac{\sin^3 x}{\sin^3 x + \cos^3 x} + \frac{\cos^3 x}{\sin^3 x + \cos^3 x} \right) \, dx \] ### Step 5: Simplify the sum The sum simplifies to: \[ 2I = \int_0^{\frac{\pi}{2}} \frac{\sin^3 x + \cos^3 x}{\sin^3 x + \cos^3 x} \, dx = \int_0^{\frac{\pi}{2}} 1 \, dx \] ### Step 6: Evaluate the integral Now we can evaluate the integral: \[ \int_0^{\frac{\pi}{2}} 1 \, dx = \left[ x \right]_0^{\frac{\pi}{2}} = \frac{\pi}{2} - 0 = \frac{\pi}{2} \] ### Step 7: Solve for \( I \) Thus, we have: \[ 2I = \frac{\pi}{2} \] Dividing both sides by 2 gives: \[ I = \frac{\pi}{4} \] ### Final Answer The value of the integral is: \[ \int_0^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin^3 x + \cos^3 x} \, dx = \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    PUNEET DOGRA|Exercise PREVIOUS YEAR QUESTIONS |65 Videos
  • CONIC SECTION

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |37 Videos
  • DETERMINANTS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS |55 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi//2) sin^3 x dx

int_0^(pi/2) sin^3x/(sin^3x+cos^3x)dx

What is int_(0)^(pi//2) (sin^(3)x)/(sin^(3)x + cos^(3)x) dx ?

Prove that : int_(0)^(pi//2) (sin^(3)x)/(sin^(3) x+ cos^(3)x)dx =(pi)/(4)

int_(0)^((pi)/(2))(sin^(3)x)/(sin^(3)x+cos^(3)x)dx

(i) int_0^(pi//2) (sin^3x)/(sin^3x+cos^3x) dx (ii) int_0^(pi//2) (cos^3x)/(sin^3x+cos^3x) dx (iii) int_0^(pi//2) (sin^4x)/(sin^4x+cos^4x) dx (iv) int_0^(pi//2) (cos^5x)/(sin^5x+cos^5x) dx (v) int_0^(pi//2) (sin^5x)/(sin^5x+cos^5x) dx

int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x+cos^(3/2)x)dx

int_(0)^(pi//2)(sin x)/((sin x + cos x)^(3))dx=

int_(0)^(pi) sin 3x dx

int(sin x)/(sin^(3)x+cos^(3)x)dx