Home
Class 14
MATHS
If cos(3x-20^(@))=sin(3y+20^(@)) then t...

If `cos(3x-20^(@))=sin(3y+20^(@))` then the value of `(x+y)` is

A

`20^(@)`

B

`30^(@)`

C

`40^(@)`

D

`45^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos(3x - 20^\circ) = \sin(3y + 20^\circ) \), we can use the identity that relates sine and cosine. Specifically, we know that: \[ \sin \theta = \cos(90^\circ - \theta) \] ### Step 1: Rewrite the sine function Using the identity, we can rewrite \( \sin(3y + 20^\circ) \): \[ \sin(3y + 20^\circ) = \cos(90^\circ - (3y + 20^\circ)) = \cos(90^\circ - 3y - 20^\circ) = \cos(70^\circ - 3y) \] ### Step 2: Set the cosines equal Now we can set the two cosine expressions equal to each other: \[ \cos(3x - 20^\circ) = \cos(70^\circ - 3y) \] ### Step 3: Use the cosine identity The cosine function has the property that \( \cos A = \cos B \) implies: \[ A = B + 360^\circ n \quad \text{or} \quad A = -B + 360^\circ n \] for some integer \( n \). Therefore, we can write two equations: 1. \( 3x - 20^\circ = 70^\circ - 3y + 360^\circ n \) 2. \( 3x - 20^\circ = - (70^\circ - 3y) + 360^\circ n \) ### Step 4: Solve the first equation Let's solve the first equation: \[ 3x - 20^\circ = 70^\circ - 3y + 360^\circ n \] Rearranging gives: \[ 3x + 3y = 90^\circ + 360^\circ n \] Dividing everything by 3: \[ x + y = 30^\circ + 120^\circ n \] ### Step 5: Solve the second equation Now, let's solve the second equation: \[ 3x - 20^\circ = -70^\circ + 3y + 360^\circ n \] Rearranging gives: \[ 3x - 3y = -50^\circ + 360^\circ n \] Dividing everything by 3: \[ x - y = -\frac{50^\circ}{3} + 120^\circ n \] ### Step 6: Solve the system of equations Now we have two equations: 1. \( x + y = 30^\circ + 120^\circ n \) 2. \( x - y = -\frac{50^\circ}{3} + 120^\circ n \) We can add these two equations: \[ (x + y) + (x - y) = (30^\circ + 120^\circ n) + \left(-\frac{50^\circ}{3} + 120^\circ n\right) \] This simplifies to: \[ 2x = 30^\circ - \frac{50^\circ}{3} + 240^\circ n \] Calculating \( 30^\circ - \frac{50^\circ}{3} \): \[ 30^\circ = \frac{90^\circ}{3} \quad \Rightarrow \quad 30^\circ - \frac{50^\circ}{3} = \frac{90^\circ - 50^\circ}{3} = \frac{40^\circ}{3} \] Thus, we have: \[ 2x = \frac{40^\circ}{3} + 240^\circ n \] Dividing by 2: \[ x = \frac{20^\circ}{3} + 120^\circ n \] Now substituting \( x \) back into the first equation to find \( y \): \[ \frac{20^\circ}{3} + 120^\circ n + y = 30^\circ + 120^\circ n \] This simplifies to: \[ y = 30^\circ - \frac{20^\circ}{3} = \frac{90^\circ}{3} - \frac{20^\circ}{3} = \frac{70^\circ}{3} \] ### Step 7: Find \( x + y \) Now we can find \( x + y \): \[ x + y = \left(\frac{20^\circ}{3} + 120^\circ n\right) + \left(\frac{70^\circ}{3}\right) = \frac{90^\circ}{3} + 120^\circ n = 30^\circ + 120^\circ n \] Thus, the value of \( x + y \) is: \[ \boxed{30^\circ} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -III|90 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -IV|22 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • TIME AND WORK

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

If sin (3x - 20^@) = cos(3y + 20^@) , then the value of (x + y) is

If x , y are acute angles , 0ltx+ylt90^(@)and sin(2x-20^(@))=cos(2y+20^(@)) , then the value of tan (x+y) is :

If x,y are actue angles , where 0 lt x + y lt 90^(@) and sin (3x-40^(@))= cos (3y+40^(@)) , then the value of tan (x+y) is equal to :

If sin(60^(@)-x)=cos(y+60^(@)) then the value of sin(x-y) is

If x,y are positive acute angles, x+ylt90^(@) and sin(2x-20^(@))=cos(2y+20^(@)) , then value of sec(x+y) is,

If sin (x - 20)^(@) = cos (3x - 10)^(@) , then find the value of x.

If sin^(-1)x+sin^(-1)y=(2pi)/(3), cos^(-1)x-cos^(-1)y=(pi)/(3) then the number of values of (x, y) is :

If sin (x+y)=cos (x-y), then the value of cos^2x is :

If sin^(-1)x+sin^(-1)y=(2 pi)/(3) and cos^(-1)x-cos^(-1)y=-(pi)/(3) then the number of values of (x,y) is

KIRAN PUBLICATION-TRIGONOMETRY -TYPE - II
  1. The value of (cot30^(@)-cot75^(@))/(tan15^(@)-tan60^(@)) is

    Text Solution

    |

  2. The value of cottheta.tan(90^(@)-theta)-sec(90^(@)-theta)cosectheta+...

    Text Solution

    |

  3. If cos(3x-20^(@))=sin(3y+20^(@)) then the value of (x+y) is

    Text Solution

    |

  4. If sintheta sec 23^(@)=1 , the value of theta is

    Text Solution

    |

  5. If 2(cos^(2)theta-sin^(2)theta)=1,theta is a positive acute angle ,...

    Text Solution

    |

  6. If sec(7theta+28^(@))=cosec(30^(@)-3theta) then the value of theta i...

    Text Solution

    |

  7. If tan((pi)/(2)-(theta)/(2))=sqrt(3) , the value of sectheta is :

    Text Solution

    |

  8. If sectheta=x+(1)/(4x), then find the value of sectheta+tantheta.

    Text Solution

    |

  9. The value of cos1^(@)" "cos2^(@)" "cos3^(@) . . .cos177^(@)" "cos178^(...

    Text Solution

    |

  10. If sectheta+tantheta=sqrt(3)(o^(@)lethetale90^(@)) then tantheta is

    Text Solution

    |

  11. If sin(60^(@)-theta)=cos(Psi-30^(@)) , then the value of tan(Psi-theta...

    Text Solution

    |

  12. If a sin theta + b cos theta = c then the value of a cos theta -b sin ...

    Text Solution

    |

  13. Maximum value of (2 sin theta + 3 cos theta) is

    Text Solution

    |

  14. The value of 152 ( sin 30^@ + 2cos^2 45^@ + 3 sin 30^@ + 4 cos^2 45...

    Text Solution

    |

  15. sin^2 theta - 3 sin theta +2=0 will be true if

    Text Solution

    |

  16. If tan alpha = n tan beta and sin alpha = m sin beta, then cos^2 alpha...

    Text Solution

    |

  17. If cosx=sinyand cot(x-40^(@)=tan(50^(@)-y) , then the values of x ...

    Text Solution

    |

  18. If cosec theta-cottheta=(7)/(2) , the value of cosectheta is :

    Text Solution

    |

  19. If xsin45^(@)=y"cosec " 30^(@), then (x^(4))/(y^(4)) is equal to

    Text Solution

    |

  20. If 5tantheta=4 , then (5sintheta-3costheta)/(5sintheta+2costheta) is ...

    Text Solution

    |