Home
Class 14
MATHS
If theta be a positive acute angle sa...

If `theta` be a positive acute angle satisfying `cos^(2)theta+cos^(4)theta=1` , then the value of `tan^(2)theta+tan^(4)theta` is

A

`(3)/(2)`

B

1

C

`(1)/(2)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given in the question: 1. **Given Equation**: \[ \cos^2 \theta + \cos^4 \theta = 1 \] 2. **Substituting**: Let \( x = \cos^2 \theta \). Then, we can rewrite the equation as: \[ x + x^2 = 1 \] 3. **Rearranging the Equation**: Rearranging gives us: \[ x^2 + x - 1 = 0 \] 4. **Using the Quadratic Formula**: To solve for \( x \), we use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1, b = 1, c = -1 \). Plugging in these values: \[ x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} \] \[ x = \frac{-1 \pm \sqrt{1 + 4}}{2} \] \[ x = \frac{-1 \pm \sqrt{5}}{2} \] 5. **Finding Positive Value**: Since \( \theta \) is a positive acute angle, we take the positive root: \[ x = \frac{-1 + \sqrt{5}}{2} \] Thus, \[ \cos^2 \theta = \frac{-1 + \sqrt{5}}{2} \] 6. **Finding \( \tan^2 \theta \)**: We know that: \[ \tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} \] Using the identity \( \sin^2 \theta = 1 - \cos^2 \theta \): \[ \sin^2 \theta = 1 - \frac{-1 + \sqrt{5}}{2} = \frac{3 - \sqrt{5}}{2} \] Therefore, \[ \tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} = \frac{\frac{3 - \sqrt{5}}{2}}{\frac{-1 + \sqrt{5}}{2}} = \frac{3 - \sqrt{5}}{-1 + \sqrt{5}} \] 7. **Simplifying \( \tan^2 \theta \)**: To simplify \( \tan^2 \theta \): \[ \tan^2 \theta = \frac{(3 - \sqrt{5})(-1 - \sqrt{5})}{(-1 + \sqrt{5})(-1 - \sqrt{5})} \] The denominator becomes: \[ (-1 + \sqrt{5})(-1 - \sqrt{5}) = 1 - 5 = -4 \] The numerator simplifies to: \[ (3 - \sqrt{5})(-1 - \sqrt{5}) = -3 - 3\sqrt{5} + \sqrt{5} + 5 = 2 - 2\sqrt{5} \] Thus, \[ \tan^2 \theta = \frac{2 - 2\sqrt{5}}{-4} = \frac{1 - \sqrt{5}}{-2} = \frac{\sqrt{5} - 1}{2} \] 8. **Finding \( \tan^4 \theta \)**: Now, we calculate \( \tan^4 \theta \): \[ \tan^4 \theta = \left(\tan^2 \theta\right)^2 = \left(\frac{\sqrt{5} - 1}{2}\right)^2 = \frac{(\sqrt{5} - 1)^2}{4} = \frac{5 - 2\sqrt{5} + 1}{4} = \frac{6 - 2\sqrt{5}}{4} = \frac{3 - \sqrt{5}}{2} \] 9. **Final Calculation**: Now we add \( \tan^2 \theta \) and \( \tan^4 \theta \): \[ \tan^2 \theta + \tan^4 \theta = \frac{\sqrt{5} - 1}{2} + \frac{3 - \sqrt{5}}{2} = \frac{\sqrt{5} - 1 + 3 - \sqrt{5}}{2} = \frac{2}{2} = 1 \] Thus, the value of \( \tan^2 \theta + \tan^4 \theta \) is \( \boxed{1} \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -III|90 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -IV|22 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • TIME AND WORK

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

If theta is a positive acute angle and 4cos^(2)theta-4costheta+1=0 , then the value of tan(theta-15^(@)) is equal to

If theta is a positive acute angle and 3(sec^(2)theta+tan^(2)theta)=5 , then the value of cos2theta is

If theta is an acute angle and tan theta + cot theta=2 , then the value of tan^(5)theta + cot^(10) theta is:

If 3cos theta=1, find the value of (6sin^(2)theta+tan^(2)theta)/(4cos theta)

If theta is a positive acute angle and tan theta + cot theta = 2 , then the value of sec theta is

If 2cos^(2)theta-1=0andtheta is acute then what is the value of (cot^(2)theta-tan^(2)theta) ?

Write the value of 4 tan^(2)theta-(4)/(cos^(2)theta).

If theta is a positive acute angle and tan 2theta tan 3 theta =1 , then the value of (2 cos^2""(5theta)/2-1) is

KIRAN PUBLICATION-TRIGONOMETRY -TYPE - II
  1. If sinalphasec(30^(@)+alpha)=1(0^(@)ltalphalt60^(@)), then find the va...

    Text Solution

    |

  2. If tantheta=1, then the value of (8sintheta+5cos theta)/(sin^(3)thet...

    Text Solution

    |

  3. If theta be a positive acute angle satisfying cos^(2)theta+cos^(4)...

    Text Solution

    |

  4. The simplified value of (SecA-cosA)^(2)+("cosec" A-sinA)^(2)-(cotA-t...

    Text Solution

    |

  5. If sintheta-costheta=(7)/(13)and0ltthetalt90^(@) , then the value of ...

    Text Solution

    |

  6. If 2costheta-sintheta=(1)/(sqrt(2)),(0^(@)ltthetalt90^(@))the value o...

    Text Solution

    |

  7. If sec^(2)theta+tan^(2)theta=7 , then the value of theta

    Text Solution

    |

  8. The simplified value of (secxsecy+tanxtany)^(2)-(secxtany+tanxsecy)^...

    Text Solution

    |

  9. If A=sin^(2)theta+cos^(4)theta, for any value of theta , then the ...

    Text Solution

    |

  10. ABC is a right angled triangle with angleA=90^(@) .Then the value...

    Text Solution

    |

  11. If tan2theta.tan4theta=1 , then the value of tan3theta is

    Text Solution

    |

  12. If cos^(2)alpha+cos^(2)beta=2, then the value of tan^(3)alpha+sin^(...

    Text Solution

    |

  13. In a right -angled triangle XYZ right angled at Y . If XY=2sqrt(6)a...

    Text Solution

    |

  14. Find minimum value of sin^(2)theta+cosec^(2)theta+cos^(2)theta+sec^(...

    Text Solution

    |

  15. If 2sin((pi)/(2))=x^(2)+(1)/(x^(2)), then the value of (x-(1)/(x)) i...

    Text Solution

    |

  16. If costheta + sec theta =2, then the value of cos^6theta + sec^6 theta...

    Text Solution

    |

  17. The numerical value of (5)/(sec^(2)theta)+(2)/(1+cot^(2)theta)+3sin...

    Text Solution

    |

  18. If (sintheta+costheta)/(sintheta-costheta)=(5)/(4) , the value of (ta...

    Text Solution

    |

  19. The value of (2cos^(2)theta-1)((1+tantheta)/(1-tantheta)+(1-tantheta...

    Text Solution

    |

  20. If sectheta+tantheta=2 , then the value of sectheta is

    Text Solution

    |