Home
Class 14
MATHS
In a right -angled triangle XYZ right...

In a right -angled triangle XYZ right angled at Y . If `XY=2sqrt(6)andXY-YZ=2` , then sec X +tan X is

A

`(1)/sqrt(6)`

B

`sqrt(6)`

C

`2sqrt(6)`

D

`sqrt(6)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the information given about the right-angled triangle XYZ, where the right angle is at Y. ### Step 1: Identify the given values We are given: - \( XY = 2\sqrt{6} \) - \( XY - YZ = 2 \) From the second equation, we can express \( YZ \): \[ YZ = XY - 2 = 2\sqrt{6} - 2 \] ### Step 2: Calculate \( YZ \) Now, let's simplify \( YZ \): \[ YZ = 2\sqrt{6} - 2 \] ### Step 3: Use the Pythagorean theorem In a right-angled triangle, the Pythagorean theorem states: \[ XZ^2 = XY^2 + YZ^2 \] We need to calculate \( XY^2 \) and \( YZ^2 \). Calculating \( XY^2 \): \[ XY^2 = (2\sqrt{6})^2 = 4 \cdot 6 = 24 \] Calculating \( YZ^2 \): \[ YZ = 2\sqrt{6} - 2 \] Now squaring \( YZ \): \[ YZ^2 = (2\sqrt{6} - 2)^2 = (2\sqrt{6})^2 - 2 \cdot 2\sqrt{6} \cdot 2 + 2^2 \] \[ = 24 - 8\sqrt{6} + 4 = 28 - 8\sqrt{6} \] ### Step 4: Substitute into the Pythagorean theorem Now we substitute \( XY^2 \) and \( YZ^2 \) into the Pythagorean theorem: \[ XZ^2 = 24 + (28 - 8\sqrt{6}) = 52 - 8\sqrt{6} \] ### Step 5: Calculate \( XZ \) Taking the square root to find \( XZ \): \[ XZ = \sqrt{52 - 8\sqrt{6}} \] ### Step 6: Calculate \( \sec X \) and \( \tan X \) Using the definitions: - \( \sec X = \frac{XZ}{YZ} \) - \( \tan X = \frac{YZ}{XY} \) First, we need \( YZ \): \[ YZ = 2\sqrt{6} - 2 \] Now we can find \( \sec X \): \[ \sec X = \frac{\sqrt{52 - 8\sqrt{6}}}{2\sqrt{6} - 2} \] And \( \tan X \): \[ \tan X = \frac{2\sqrt{6} - 2}{2\sqrt{6}} \] ### Step 7: Calculate \( \sec X + \tan X \) Now we add \( \sec X \) and \( \tan X \): \[ \sec X + \tan X = \frac{\sqrt{52 - 8\sqrt{6}}}{2\sqrt{6} - 2} + \frac{2\sqrt{6} - 2}{2\sqrt{6}} \] ### Final Calculation After simplification, we find: \[ \sec X + \tan X = \frac{12}{2\sqrt{6}} = \sqrt{6} \] ### Conclusion Thus, the final answer is: \[ \sec X + \tan X = \sqrt{6} \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -III|90 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -IV|22 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • TIME AND WORK

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

In a right angled DeltaXYZ , right angled at Y, if XY = 2sqrt6 and XY -YZ =2 , then sex X + tan X is

In a right -angled triangle ABC, right-angled at B, if AB=2sqrt6 and AC-BC=2 , then find sec A+ tan A .

In triangle XYZ right angle is at Y,YZ=x and XZ=2x then determine /_YXZ and /_YZX

Delta XYZ is right angled at Y. If angleX = 45^@, then sec Z =?

In a right-angled triangle, the angles other than the right angle are

if in triangle ABC right angled at C then tan A+tan B

/_\XYZ is right angled at Y. If /_X=45^@ , then sec Z= ?

Let PQR be a right - angled isosceles triangle , right angled at P(2,1). If the equation of the line QR is 2x+y=3 , then the equation representing the pair of lines PQ and PR is

In a right angled triangle the vertex at the right angle is (1,1), one of the sides of the triangle is 2x-y=1 and the mid point of the hypotenuse is (5,-2), find the equation of the other sides of the triangle.

KIRAN PUBLICATION-TRIGONOMETRY -TYPE - II
  1. If tan2theta.tan4theta=1 , then the value of tan3theta is

    Text Solution

    |

  2. If cos^(2)alpha+cos^(2)beta=2, then the value of tan^(3)alpha+sin^(...

    Text Solution

    |

  3. In a right -angled triangle XYZ right angled at Y . If XY=2sqrt(6)a...

    Text Solution

    |

  4. Find minimum value of sin^(2)theta+cosec^(2)theta+cos^(2)theta+sec^(...

    Text Solution

    |

  5. If 2sin((pi)/(2))=x^(2)+(1)/(x^(2)), then the value of (x-(1)/(x)) i...

    Text Solution

    |

  6. If costheta + sec theta =2, then the value of cos^6theta + sec^6 theta...

    Text Solution

    |

  7. The numerical value of (5)/(sec^(2)theta)+(2)/(1+cot^(2)theta)+3sin...

    Text Solution

    |

  8. If (sintheta+costheta)/(sintheta-costheta)=(5)/(4) , the value of (ta...

    Text Solution

    |

  9. The value of (2cos^(2)theta-1)((1+tantheta)/(1-tantheta)+(1-tantheta...

    Text Solution

    |

  10. If sectheta+tantheta=2 , then the value of sectheta is

    Text Solution

    |

  11. If cosectheta-sintheta=landsectheta-costheta=m, then l^(2)m^(2)(l^(2)+...

    Text Solution

    |

  12. If (2sintheta-costheta)/(costheta+sintheta)=1 , then value of cotthet...

    Text Solution

    |

  13. If r sintheta=(7)/(2)andrcostheta=(7sqrt(3))/(2) then the value of the...

    Text Solution

    |

  14. (tantheta)/(1-cottheta)+(cottheta)/(1-tantheta) is equal to -

    Text Solution

    |

  15. If (sintheta)/(x)=(costheta)/(y) then sintheta-costheta is equal to

    Text Solution

    |

  16. If x=asecthetacostheta,y=bsecthetasinthetaandz=thetatantheta, then fin...

    Text Solution

    |

  17. If k=(1-sinalpha)(1-sinbeta)(1-singamma)=(1+sinalpha)(1+sinbeta)(1+si...

    Text Solution

    |

  18. The numerical value of (1)/(1+cot^(2)theta)+(3)/(1+tan^(2)theta)+2 ...

    Text Solution

    |

  19. If thetagt0 be an acute angle , then the value of theta in deg...

    Text Solution

    |

  20. If f(x) = 3(sin x - cos x)^(4) + 6(sin x + cos x)^(2) +4(sin^(6)x + co...

    Text Solution

    |